The development of new manufacturing processes and process enhancements at the micro/meso-scale has expanded considerably in recent years due to the demand for miniaturized products. With this increased demand comes a critical need for a fundamental understanding of the role these reduced length scales play in the various process mechanisms. Significant research has been recently performed on a wide range of micro/meso-scale manufacturing processes to understand the role of the tribological effect, size effect and other mechanisms on process performance. This paper reviews the research and state-of-the-art for micro/meso-scale mechanical cutting and related machine technologies, micro-EDM, laser micro-machining and laser shock peening, microforming, and micro-scale bio-manufacturing and polymer fabrication. These latter areas may be of particular interest as they have not received as much attention as the traditional process areas.

1.
Dohda
K.
,
Ni
J.
, and
de Rooij
N.
, “
A Message from the Guest Editors, Journal of Manufacturing Science and Engineering
,”
Micro/Meso-Scale Manufacturing
, Vol.
126
, No.
4
, p.
641
641
,
2004
.
2.
Liu
X.
,
DeVor
R. E.
,
Kapoor
S. G.
, and
Ehmann
K. F.
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
4
, pp.
666
678
,
2004
.
3.
Volger
M. P.
,
Liu
X.
,
Kapoor
S. G.
,
DeVor
R. E.
, and
Ehmann
K. F.
, “
Development of Meso-Scale Machine Tool (mMT) Systems
,”
Trans. of NAMRI/SME
, Vol.
XXX
, pp.
653
661
,
2002
.
4.
De Chiffre
L.
,
Kunzmann
H.
,
Peggs
G. N.
, and
Lucca
D. A.
, “
Surfaces in Precision Engineering, Microengineering and Nanotechnology
,”
Annals of the CIRP
, Vol.
52
, No.
2
, pp.
561
577
,
2003
.
5.
Narasimhan
J.
,
Yu
Z.
, and
Rajurkar
K. P.
, “
Tool Wear Compensation and Path Generation in Micro and Macro EDM
,”
Trans. of NAMRI/SME
, Vol.
32
, pp.
151
158
,
2004
.
6.
Alting
L.
,
Kimura
F.
,
Hansen
H. N.
, and
Bissacco
G.
, “
Micro Engineering
,”
Annals of CIRP
, Vol.
52
, No.
2
, pp.
635
657
,
2003
.
7.
Cao
J.
,
Krishnan
N.
,
Wang
Z.
,
Lu
H.
,
Liu
W. K.
, and
Swanson
A.
, “
Microforming: Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
4
, pp.
642
652
,
2004
.
8.
Meijer
J.
, “
Laser Beam Machining (LBM), State of the Art and New Opportunties
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
2
17
,
2004
.
9.
Kulkarni
K.
,
Chang
Z.
, and
Lei
S.
, “
Surface Micro/Nanostructuring of Cutting Tool Materials by Femotosecond Laser
,”
Trans. of NAMRI/SME
, Vol.
32
, pp.
25
32
,
2004
.
10.
Atkins
A. G.
, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
International Journal of Mechanical Sciences
, Vol.
45
, pp.
373
396
,
2003
.
11.
Subbiah S., and Melkote, S. N., “On the Size Effect in Micro-Cutting at Low and High Rake Angles,” IMECE2004-59578, Proceedings of ASME IMECE, Anaheim, CA, November 13–20, pp. 1–9, 2004.
12.
Singh, R. K., and Melkote, S. N., “Preliminary Investigation of Laser Assisted Mechanical Micromachining,” In Proceedings of the 2nd JSME/ASME International Conference on Materials and Processing, Seattle, USA, June 19–22, 2005.
13.
Lee
J.
,
Lee
D.
,
Jung
Y.
, and
Chung
W.
, “
A Study on Micro-Grooving Characteristics of Planar Lightwave Circuit and Glass Using Ultrasonic Vibration Cutting
,”
Journal of Materials Processing Technology
, Vols.
130–131
, pp.
396
400
,
2002
.
14.
Moriwaki, T., “Recent Development of Ultraprecision Micro Cutting Technology,” Proceedings of the International Conference on Precision Engineering (ICoPE 2003/04), pp. 3–10, 2004.
15.
Zhao
Q.
,
Dong
S.
, and
Sun
T.
, “
Research on a Diamond Tip Wear Mechanism in Atomic Force Microscope-Based Micro/Nano-Machining
,”
High Technology Letters
, Vol.
7
, No.
3
, pp.
84
89
,
2001
.
16.
Yan
Y.
,
Sun
T.
,
Dong
S.
, and
Cheng
K.
, “
Novel Micro-Machining Method Basing on AFM and High Accuracy Stage
,”
Proceedings of SPIE - The International Society for Optical Engineering
, Vol.
4979
, pp.
364
371
,
2003
.
17.
Sun
T.
,
Yan
Y. D.
,
Xia
J. F.
,
Dong
S.
,
Liang
Y. C.
, and
Cheng
K.
, “
Research on Micro Machining using AFM Diamond Tip
,”
Key Engineering Materials
, Vols.
258–259
, pp.
577
581
,
2004
.
18.
Zhao
Q. L.
,
Chen
M. J.
,
Liang
Y. C.
,
Dong
S.
, and
Cheng
K.
, “
Measurement and Analysis of AFM-Based Nano-Indentation on Micro-Machined Silicon Surface
,”
Key Engineering Materials
, Vols.
257–258
, pp.
39
44
,
2004
.
19.
Son
S. M.
,
Lim
H. S.
, and
Ahn
J. H.
, “
Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting
,”
International Journal of Machine Tools and Manufacture
, Vol.
45
, Nos.
4–5
, pp.
529
535
,
2005
.
20.
Lee
W. B.
, and
Cheung
C. F.
, “
A Mesoplasticitiy Analysis of Cutting Friction in Ultra-Precision Machining
,”
Journal of Materials Processing Technology
, Vol.
140
, Nos.
1–3
, pp.
292
297
,
2003
.
21.
Lo
S.
, and
Lin
Y.
, “
An Investigation of Sticking Behavior on the Chip-Tool Interface Using Thermo-Elastic-Plastic Finite Element Method
,”
Journal of Materials Processing Technology
, Vol.
121
, Nos.
2–3
, pp.
285
292
,
2002
.
22.
Cheung
C. F.
, and
Lee
W. B.
, “
A Multi-Spectrum Analysis of Surface Roughness Formation in Ultra-Precision Machining
,”
Precision Engineering
, Vol.
24
, No.
1
, pp.
77
87
,
2000
.
23.
Lee
W. B.
, and
Cheung
C. F.
, “
Dynamic Surface Topography Model for the Prediction of Nano-Surface Generation in Ultra-Precision Machining
,”
International Journal of Mechanical Sciences
, Vol.
43
, No.
4
, pp.
961
991
,
2001
.
24.
Inamura
T.
,
Takezawa
N.
, and
Shimada
S.
, “
Importance of Micro/Macro Interaction in the Mechanism of Brittle Mode Cutting
,”
CIRP Annals - Manufacturing Technology
, Vol.
51
No.
1
, pp.
487
490
,
2002
.
25.
Yamada
K.
, and
Homma
K.
, “
Influence of Boundary Condition of the System in Micro-Cutting Simulation
,”
Transactions of the Japan Society of Mechanical Engineers, Part C
, Vol.
68
, No.
10
, pp.
3088
3093
,
2002
.
26.
Liu, X., Jun, M. B. G., DeVor, R. E., and Kapoor, S. G., “Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling,” IMECE2004-62416, Proceedings of ASME IMECE, November 13–20, Anaheim, California USA, 2004.
27.
Lucca
D. A.
,
Seo
Y. W.
, and
Rhorer
R. L.
, and
Donaldson
R. R.
, “
Aspects of Surface Generation in Orthogonal Ultraprecision Machining
,”
Annals of CIRP
, Vol.
43
, No.
1
, pp.
43
46
,
1994
.
28.
Hocheng
H.
, and
Hsieh
M. L.
, “
Signal Analysis of Surface Roughness in Diamond Turning of Lens Molds
,”
Int. J. of Machine Tools and Manufacture
, Vol.
44
, No.
15
, pp.
1607
1618
,
2004
.
29.
Bao
W. Y.
, and
Tansel
I. N.
, “
Modeling Micro-End-Milling Operations. Part II: Tool Run-Out
,”
Int. J. of Machine Tools and Manufacture
, Vol.
40
, No.
15
, pp.
2175
2192
,
2000
.
30.
Adams
D. P.
,
Vasile
M. J.
,
Benavides
G.
, and
Campbell
A. N.
, “
Micromilling of Metal Alloys with Focused Ion Beam—Fabricated Tools
,”
Precision Engineering
, Vol.
25
, No.
2
, pp.
107
113
,
2001
.
31.
Rajurkar
K. P.
, and
Wang
W. M.
, “
Improvements of EDM Performance with Advanced Monitoring and Control Systems
,”
ASME Journal of Manuf. Sci. and Eng.
, Vol.
119
, pp.
770
775
,
1997
.
32.
Rajurkar
K. P.
,
Zhu
D.
, and
Wei
B.
, “
Minimization of Machining Allowance in Electrochemical Machining
,”
Annals of CIRP
, Vol.
47
, No.
1
, pp.
165
168
,
1998
.
33.
Okazaki
Y.
,
Mishima
N.
, and
Ashida
K.
, “
Microfactory — Concept, History, and Developments
,”
ASME J. of Manuf. Sci. and Eng.
, Vol.
126
, No.
4
, pp.
837
844
,
2004
.
34.
Okazaki, Y., and Kitahara, T., “NC Microlathe to Machine Micro-Parts,” Proceedings of ASPE Annual Meeting, pp. 575–578, 2000.
35.
Okazaki, Y., Mori, T., and Morita, N., “Desk-Top NC Milling Machine with 200 krpm Spindle,” Proceedings of ASPE Annual Meeting, pp. 192–195, 2001.
36.
Rajurkar, K.P., “Processes,” Presentation at the WTEC Workshop on Micromanufacturing, Arlington, VA, 2005.
37.
Chen
H.
,
Mayor
R.
, and
Ni
J.
, “
A Virtual Machine Tool (VMT) Integrated Design Environment and its Application to Meso-Scale Machine Tool Development
,”
Trans. of NAMRI/SME
, Vol.
32
, pp.
327
334
,
2004
.
38.
Bourell, D., “Materials,” Presentation at the WTEC Workshop on Micromanufacturing, Arlington, VA, 2005.
39.
Kapoor, S.G., DeVor, R.E., and Ehmann, K.F., “Current State of Micro-Scale Machine Tool Systems and Machining Research,” Presentation at the WTEC U.S. Review Workshop on Micro-Manufacturing, Arlington, VA, 2004.
40.
Ashida, K., Mishima, N., Maekawa, H., Tanikawa, T., Kaneko, K., and Tanaka, M., “Development of Desktop Machining Microfactory,” Proceedings of Japan — USA Symposium on Flexible Automation, pp. 175–178, 2000.
41.
Pham
D. T.
,
Dimov
S. S.
,
Bigot
S.
,
Ivanov
A.
, and
Popov
K.
, “
Micro-EDM — Recent Developments and Research Issues
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
50
57
,
2004
.
42.
Yu
Z. Y.
,
Kozak
J.
, and
Rajurkar
K. P.
, “
Modelling and Simulation of Micro EDM Process
,”
Annals of the CIRP
, Vol.
52
, No.
1
, pp.
143
146
,
2003
.
43.
Han
F.
,
Wachi
S.
, and
Kunieda
M.
, “
Improvement of Machining Characteristics of Micro-EDM Using Transistor Type Isopulse Generator and Servo Feed Control
,”
Precision Engineering
, Vol.
28
, No.
4
, pp.
378
385
,
2004
.
44.
Yu
Z.
,
Rajurkar
K. P.
, and
Shen
H.
, “
Drilling of Noncircular Blind Holes by Micro EDM
,”
Trans. of NAMRI/SME
, Vol.
XXX
, pp.
263
270
,
2002
.
45.
Diver
C.
,
Atkinson
J.
,
Helml
H. J.
, and
Li
L.
, “
Micro-EDM Drilling of Tapered Holes for Industrial Applications
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
296
303
,
2004
.
46.
Takezawa
H.
,
Hamamatsu
H.
,
Mohri
N.
, and
Saito
N.
, “
Development of Micro-EDM-Center With Rapidly Sharpened Electrode
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
112
116
,
2004
.
47.
Fleischer
J.
,
Masuzawa
T.
,
Schmidt
J.
, and
Knoll
M.
, “
New Applications for Micro-EDM
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
246
249
,
2004
.
48.
Ori, R.I., Itoigawa, F., Hayakawa, S., Nakamura, T., and Tanaka, S., “Micro-EDM Deposition Alloying Process,” IMECE 2004-61767, Proc. of the ASME International Mechanical Engineering Congress and Exposition, Nov.13–20, Anaheim, CA, 2004.
49.
Meijer
J.
, “
Laser Beam Machining (LBM), State of the Art and New Opportunties
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
2
17
,
2004
.
50.
Liu
G.
,
Toncich
D. J.
,
Harvey
E. C.
and
Yuan
F.
, “
Diagnostic Technique for Laser Micromachining of Multi-Layer Thin Films
,
International Journal of Machine Tools and Manufacture
, Vol.
45
, Nos.
4–5
, pp.
58589
58589
,
2005
.
51.
Malshe
A.
,
Deshpande
D.
,
Stach
E.
,
Rajurkar
K.
, and
Alexander
A.
, “
Investigation of Femtosecond Laser-Assisted Micromachining of Lithium Niobate
,”
Annals of the CIRP
, Vol.
53
, No.
1
, pp.
187
190
,
2004
.
52.
Malshe
A.
, and
Deshpande
D.
, “
Nano and Microscale Surface and Sub-Surface Modifications Induced in Optical Materials by Femtosecond Laser Machining
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
585
590
,
2004
.
53.
Choi
K. H.
,
Meijer
J.
,
Masuzawa
T.
, and
Kim
D.
, “
Excimer Laser Micromachining for 3D Microstructure
,”
Journal of Materials Processing Technology
, Vol.
149
, pp.
561
566
,
2004
.
54.
Li
L.
, and
Achara
C.
, “
Chemical Assisted Laser Machining for the Minimisation of Recast and Heat Affected Zone
,”
Annals of the CIRP
, Vol.
53
, No.
1
, pp.
175
178
,
2004
.
55.
Chung, H., Kurabayashi, K., and Das, S., “Laser Micro-Machining Using Near-Field Nano-Optics,” IMECE 2004-60615, Proc. of the ASME International Mechanical Engineering Congress and Exposition, Nov. 13–20, Anaheim, CA, 2004.
56.
Zhang
W.
, and
Yao
Y. L.
, “
Micro-Scale Laser Shock Processing — Modeling, Testing, and Microstructure Characterization
,”
Trans. of NAMRI/SME
, Vol.
XXX
, pp.
543
550
,
2002
.
57.
Chen
H.
, and
Yao
Y. L.
, “
Modeling Schemes, Transiency, and Strain Measurement For Microscale Laser Shock Peening
,”
Trans. of NAMRI/SME
, Vol.
XXXI
, pp.
589
596
,
2003
.
58.
Chen
H.
,
Yao
Y. L.
,
Kysar
J.
,
Noyan
I. C.
, and
Wang
Y.
, “
Fourier Analysis of X-Ray Microdiffraction Profiles to Characterize Laser Shock Peened Metals
,”
Trans. of NAMRI/SME
, Vol.
32
, pp.
351
358
,
2004
.
59.
Chen
H.
,
Wang
Y.
,
Kysar
J. W.
, and
Yao
Y. L.
, “
Systematical Characterization of Material Response to Microscale Laser Shock Peening
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
4
, pp.
740
749
,
2004
.
60.
Chen, H., Yao, Y.L., Kysar, J.W., and Wang, Y., “Experimental Characterization and Simulation of Three Dimensional Plastic Deformation Induced by Microscale Laser Shock Peening,” IMECE 2004-59661, Proc. of the ASME International Mechanical Engineering Congress and Exposition, Nov. 13–20, Anaheim, CA, 2004.
61.
Chen
H.
,
Yao
Y. L.
, and
Kysar
J. W.
, “
Spatially Resolved Characterization of Residual Stress Induced by Microscale Laser Shock Peening
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
2
, pp.
226
236
,
2004
.
62.
Zhang
W.
,
Yao
Y. L.
, and
Noyan
I. C.
, “
Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
1
, pp.
10
17
,
2004
.
63.
Zhang
W.
,
Yao
Y. L.
, and
Noyan
I. C.
, “
Microscale Laser Shock Peening of Thin Films, Part 2: High Spatial Resolution Material Characterization
,”
Journal of Manufacturing Science and Engineering
, Vol.
126
, No.
1
, pp.
18
24
,
2004
.
64.
Cheng
P.
,
Yao
Y. L.
,
Liu
C.
,
Pratt
D.
, and
Fan
Y.
, “
Analysis and Prediction of Size Effect on Laser Forming of Sheet Metal
,”
Trans. of NAMRI/SME
, Vol.
32
, pp.
439
446
,
2004
.
65.
Ramesh
B.
and
Maniatty
A. M.
Stabilized Finite Element Formulation for Elastic-Plastic Finite Deformations
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
194
, Nos.
6–8
, pp.
775
800
,
2005
.
66.
Palaniswamy
H.
,
Ngaile
G
, and
Altan
T.
, “
Finite Element Simulation of Magnesium Alloy Sheet Forming at Elevated Temperatures
,”
Journal of Materials Processing Technology
, Vol.
146
, No.
1
,
2004
, pp.
52
60
.
67.
Abu-Farha
F. K.
, and
Khraisheh
M. K.
, “
Modeling of Anisotropic Deformation in Superplastic Sheet Metal Stretching
,”
Journal of Engineering Materials and Technology
, Vol.
127
, No.
1
, pp.
159
164
,
2005
.
68.
Li
M.
, “
Continuing Equilibrium Assumption Over-Restricts Bifurcation Condition in the Classical Localization Theory
,”
International Journal of Plasticity
, Vol.
20
, No.
11
, pp.
2047
2061
,
2004
.
69.
Chow
C. L.
,
Jie
M.
, and
Hu
S. J.
, “
Forming Limit Analysis of Sheet Metals Based on a Generalized Deformation Theory
,”
Journal of Engineering Materials and Technology
, Vol.
125
, No.
3
, pp.
260
265
,
2003
.
70.
Luckey, S.G., Friedman, P.A., and Xia, Z.C., “Aspects of Element Formulation and Strain Rate Control in the Numerical Modeling of Superplastic Forming,” Advances in Superplasticity and Superplastic Forming, pp. 371–380, 2004.
71.
Krishnamurthy, R., Liu, Y., Wu, X., Yang, W., and Wenner, M.L., “Thermal Forming of Magnesium Alloys: Processing and Simulation,” Magnesium Technology 2004, pp. 51–60, 2004.
72.
Geiger
M.
,
Kleiner
M.
,
Eckstein
R.
,
Tiesler
N.
, and
Engel
U.
, “
Microforming
,”
Annals of CIRP
, Vol.
50
, No.
2
, pp.
445
462
,
2001
.
73.
Geissdoerfer, S. and Engel, U., “Mesoscopic Model — Simulation of Size Effects in Microforming,” to appear in the Journal of Steel and Related Materials.
74.
Reinstadtler
M.
,
Rabe
U.
,
Scherer
V.
,
Hartmann
U.
,
Goldade
A.
,
Bhushan
B.
, and
Arnold
W.
, “
On the Nanoscale Measurement of Friction Using Atomic-Force Microscope Cantilever Torsional Resonances
,”
Applied Physics Letters
, Vol.
82
, No.
16
, pp.
2604
2606
,
2003
.
75.
Wang
W.
,
Huang
Y.
,
Hsia
K. J.
,
Hu
K. X.
, and
Chandra
A.
, “
A Study of Microbend Test by Strain Gradient Plasticity
,”
Int. J. Plasticity
, Vol.
19
, pp.
365
382
,
2003
.
76.
Stolken
J. S.
and
Evans
A. G.
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
, Vol.
46
, No.
14
, pp.
5109
5115
,
1998
.
77.
Egerer
E.
and
Engel
U.
, “
Process Characterization and Material Flow in Microforming at Elevated Temperatures
,”
Journal of Manufacturing Processes
, Vol.
6
, No.
1
, pp.
11
16
,
2004
.
78.
Krishnan, N., Cao, J., Ehmann, K., and Owusu-Ofori, S., “Microforming: Study of Grain Size and Friction Effects in the Extrusion of Micropins,” IWMF 2004, 4th International Workshop on Microfactories, Shangai, China, 2004.
79.
Jeong
H.
,
Hata
S.
, and
Shimokohbe
A.
, “
Microforming of Three-Dimensional Microstructures From Thin-Film Metallic Glass
,”
Journal of Microelectromechanical Systems
, Vol.
12
, No.
1
, pp.
42
52
,
2003
.
80.
Saotome
Y.
,
Imai
K.
,
Shioda
S.
,
Shimizu
S.
,
Zhang
T.
, and
Inoue
A.
, “
The Micro-Nanoformability of Pt-based Metallic Glass and the Nanoforming of Three-Dimensional Structures
,”
Intermetallics
, Vol.
10
, pp.
1241
1247
,
2002
.
81.
Hanada
K.
,
Zhang
L.
,
Mayuzumi
M.
, and
Sano
T.
, “
Fabrication of Diamond Dies for Microforming
,”
Diamond and Related Materials
, Vol.
12
, pp.
757
761
,
2003
.
82.
Saotome
Y.
,
Noguchi
Y.
,
Zhang
T.
, and
Inoue
A.
, “
Characteristic Behavior of Pt-Based Metallic Glass Under Rapid Heating and its Application to Microforming
,”
Materials Science and Engineering A
, Vols.
375–377
, No.
1–2
, pp.
389
93
,
2004
.
83.
Sun
W.
,
Darling
A.
,
Starly
B
, and
Nam
J.
, “
Computer-Aided Tissue Engineering: Overview, Scope and Challenges
,”
Biotechnology and Applied Biochemistry
, Vol.
39
, No.
1
, pp.
29
47
,
2004
.
84.
Mooney, D.J., “Tissue Engineering With Biodegradable Polymer Matrices,” Proc. 15th Southern Biomedical Engineering Conf., Dayton, Ohio, pp. 537–540, 1996.
85.
Widmer
M. S.
,
Gupta
P. K.
,
Lu
L.
,
Meszlenyi
R. K.
,
Evans
G. R. D.
,
Brandt
K.
,
Savel
T.
,
Gurlek
A.
,
Patrick
C. W.
, and
Mikos
A. G.
, “
Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration
,”
Biomaterials
, Vol.
19
, pp.
1945
1955
,
1998
.
86.
Chen
G.
,
Ushida
T.
, and
Tateishi
T.
Development of Biodegradable Porous Scaffolds for Tissue Engineering
,”
Mat. Sci. and Eng
, Vol.
17
, pp.
63
69
,
2001
.
87.
Thomson
R. C.
,
Yaszemski
M. J.
,
Powers
J. M.
, and
Mikos
A. G.
, “
Hydroxyapatite Fiber Reinforced Poly(-Hydroxy Ester) Foams for Bone Regeneration
,”
Biomaterials
Vol.
19
, pp.
1935
1943
,
1998
.
88.
Taboas
J. M.
,
Maddox
R. D.
,
Krebsbach
P. H.
, and
Hollister
S.
, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds
,”
J. Biomaterials
, Vol.
24
, pp.
182
194
,
2003
.
89.
Petzold
R.
,
Zeilhofer
H. F.
and
Kalender
W. A.
, “
Rapid Prototyping Technology in Medicine-Base and Applications
,”
Comp. Med. Imag. Graphics
, Vol.
23
, pp.
277
284
,
1999
.
90.
Yang
S.
,
Leong
K.
,
Du
Z.
, and
Chua
C.
, “
The Design of Scaffolds for Use in Tissue Engineering. Part 2. Rapid Prototyping Techniques
,”
Tissue Engineering
, Vol.
8
, pp.
1
11
,
2001
.
91.
Lam
C. X. F.
,
Mo
X. M.
,
Teoh
S. H.
, and
Hutmacher
D. W.
, “
Scaffold Development Using 3D Printing With a Starch-Based Polymer
,”
Materials Science and Engineering
, Vol.
20
, pp.
49
56
,
2002
.
92.
Zeltinger
J.
,
Sherwood
J. K.
,
Graham
D. A.
,
Mueller
R.
, and
Griffith
L. G.
, “
Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition
,”
Tissue Engineering
, Vol.
7
, pp.
557
572
,
2001
.
93.
Kim
S. S.
,
Utsunomiya
H.
,
Koski
J. A.
,
Wu
B. M.
,
Cima
M. J.
,
Sohn
J.
,
Mukai
K.
,
Griffith
L. G.
, and
Vacanti
J. P.
, “
Survival and Function of Hepatocytes on a Novel Three-Dimensional Synthetic Biodegradable Polymer Scaffold With an Intrinsic Network of Channels
,”
Ann. Surg.
, Vol.
228
, pp.
8
13
,
1998
.
94.
Wu
B. M.
,
Borland
S. W.
,
Giordano
R. A.
,
Cima
L. G.
,
Sachs
E. M.
, and
Cima
M. J.
, “
Solid Free-Form Fabrication of Drug Delivery Devices
,”
J. Controlled Release
, Vol.
40
, pp.
77
87
,
1996
.
95.
Zein
I.
,
Hutmacher
D. W.
,
Tan
K. C.
, and
Teoh
S. H.
, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
, Vol.
23
, pp.
1169
1185
,
2002
.
96.
Hutmacher
D. W.
,
Schantz
T.
,
Zein
I.
,
Ng
K. W.
,
Teoh
S. H.
, and
Tan
K. C.
, “
Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling
,”
J. Biomed. Mat. Res.
, Vol.
55
, pp.
203
216
,
2001
.
97.
Xiong
Z.
,
Yan
Y.
,
Zhang
R.
, and
Sun
L.
, “
Fabrication of Porous Poly(L-lactic acid) Scaffolds for Bone Ttissue Engineering via Precise Extrusion
,”
Scripta Materialia
, Vol.
45
, pp.
773
779
,
2001
.
98.
Wang
F.
,
Shor
L.
,
Darling
A.
,
Khalil
S.
,
Sun
W.
,
Gu¨cˆeri
S.
and
Lau
A.
, “
Precision Extruding Deposition and Characterization of Cellualr Poly-ε-Caprolactone Tissue Scaffolds
,”
Rapid Prototyping Journal
, Vol.
10
, No.
1
, pp.
42
49
,
2004
.
99.
Xiong
Z
,
Yan
Y
,
Wang
S
,
Zhang
R
, and
Zhang
C.
, “
Fabrication of Porous Scaffolds for Bone Tissue Rngineering via Low-Temperature Deposition
,”
Scripta Materialia
, Vol.
46
, pp.
771
776
,
2002
.
100.
Yan
Y.
,
Xiong
Z.
,
Hu
Y.
,
Wang
S.
,
Zhang
R.
and
Zhang
C.
, “
Layered Manufacturing of Tissue Engineering Scaffolds via Multi-Nozzle Deposition
,”
Materials Letters
, Vol.
4211
, pp.
1
6
,
2002
.
101.
Vozzi
G.
,
Flaim
C. J.
,
Bianchi
F.
,
Ahluwalia
A.
, and
Bhatia
S.
, “
Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds With a Well-Defined Geometry for Application to Tissue Engineering
,”
Materials Science and Engineering
, Vol.
20
, pp. %
43–47
,
2002
2002
.
102.
Vozzi
G.
,
Flaim
C. J.
,
Ahluwalia
A.
, and
Bhatia
S.
, “
Fabrication of PLGA Scaffolds Using Soft Lithography and Microsyringe Deposition
,”
Biomaterials
, Vol.
24
, pp.
2533
2540
,
2003
.
103.
Ang
T. H.
,
Sultana
F. S. A.
,
Hutmacher
D. W.
,
Wong
Y. S.
,
Fuh
J. Y. H.
,
Mo
X. M.
,
Loh
H. T.
,
Burdet
E.
, and
Teoh
S. H.
, “
Fabrication of 3D Chitosan-Hydroxyapatite Scaffolds Using a Robotic Dispensing System
,”
Materials Science and Engineering
, Vol.
20
, pp.
35
42
,
2002
.
104.
Mironov
V.
,
Boland
T.
,
Trusk
T.
,
Forgacs
G.
, and
Markwald
R.
Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering
,”
TRENDS in Biotechnology
, Vol.
21
, pp.
157
161
,
2003
.
105.
Landers
R.
, and
Mu¨lhaupt
R.
, “
Desktop Manufacturing of Complex Objects, Prototypes and Biomedical Scaffolds by Means of Computer-Assisted Design Combined With Computer-Guided 3D Plotting of Polymers and Reactive Oligomers
,”
Macromol Mater Eng.
, Vol.
282
, pp.
17
21
,
2000
.
106.
Landers
R.
,
Hu¨bner
U.
,
Schmelzeisen
R.
, and
Mu¨lhaupt
R.
, “
Rapid Prototyping of Scaffolds Derived From Thermoreversible Hydrogels and Tailored for Applications in Tissue Engineering
,”
Biomaterials
, Vol.
23
, pp.
4437
4447
,
2002
.
107.
Wilson
W. C.
, and
Boland
T.
, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anat Rec
, Vol.
272A
, No.
2
, pp.
491
496
,
2003
.
108.
Khalil
S.
,
Nam
J.
, and
Sun
W.
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping Journal
, Vol.
11
, No.
1
, pp.
9
17
,
2005
.
109.
Yamaguchi
K.
,
Sakai
K.
,
Yamanaka
T.
, and
Hirayama
T.
, “
Generation of Three-Dimensional Micro Structure Using Metal Jet
,”
Precision Engineering
, Vol.
24
, pp.
2
8
,
2000
.
110.
Goldmann
T.
and
Gonzalez
J. S.
, “
DNA-Printing: Utilization of a Standard Inkjet Printer for the Transfer of Nucleic Acids to Solid Supports
,”
J. Biochem. Biophys. Methods
, Vol.
42
, pp.
105
110
,
2000
.
111.
Kimura
J.
,
Kawana
Y.
, and
Kuriyama
T.
, “
An Immobilized Enzyme Membrane Fabrication Method Using an Ink Jet Nozzle
,”
Biosensors
, Vol.
4
, pp.
41
52
,
1998
.
112.
Stimpson
D. I.
,
Cooley
P. W.
,
Knepper
S. M.
, and
Wallace
D. B.
, “
Parallel Production of Oligonucleotide Arrays Using Membranes and Reagent Jet Printing
,”
BioTechniques
, Vol.
25
, pp.
886
890
,
1998
.
113.
Rotting
O.
,
Ropke
W.
,
Becker
H.
, and
Gartner
C.
, “
Polymer Microfabrication Technologies
,”
Microsystem Technologies
, Vol.
8
, pp.
32
36
,
2002
.
114.
Mekaru
H.
,
Yamada
T.
,
Yan
S.
, and
Hattori
T.
, “
Microfabrication by Hot Embossing and Injection Molding at LASTI
,”
Microsystem Technologies
, Vol.
10
, pp.
682
688
,
2004
.
115.
Heckele
M.
, and
Schomburg
W. K.
, “
Review on Micro Molding of Thermoplastic Polymers
,”
J. Micromechanics and Microengineering
, Vol.
14
, pp.
1
14
,
2004
.
116.
Piotter
V.
,
Holstein
N.
,
Plewa
K.
,
Ruprecht
R.
, and
Hausselt
J.
, “
Replication of Micro Components by Different Variants of Injection Molding
,”
Microsystem Technologies
, Vol.
10
, pp.
547
551
,
2004
.
117.
Worgull
M.
, and
Heckele
M.
, “
New Aspects of Simulation in Hot Embossing
,”
Microsystem Technologies
, Vol.
10
, pp.
432
437
,
2004
.
118.
Piotter
V.
,
Mueller
K.
,
Plewa
K.
,
Ruprecht
R.
, and
Hausselt
J.
, “
Performance and Simulation of Thermoplastic Micro Injection Molding
,”
Microsystem Technologies
, Vol.
8
, pp.
387
390
,
2002
.
119.
Gale
M. T.
, “
Replicated Diffractive Optics and Micro-Optics
,”
Optics and Photomics News
, Vol.
14
, pp.
24
29
,
2003
.
120.
Yao
D.
, and
Kim
B.
, “
Injection Molding High Aspect Ratio Microfeatures
,”
Journal of Injection Molding Technology
, Vol.
6
, pp.
11
17
,
2002
.
121.
Yao
D.
, and
Nagarajan
P.
, “
Cold Forging Method for Polymer Microfabrication
,”
Polymer Engineering and Science
, Vol.
44
, pp.
1998
2004
,
2004
.
122.
Kaldos
A.
,
Pieper
H. J.
,
Wolf
E.
, and
Krause
M.
, “
Laser Machining in Die Making — a Modern Rapid Tooling Process
,”
Journal of Materials Processing Technology
, Vol.
155
, pp.
1815
1820
,
2004
.
123.
Yu
L.
,
Koh
C. G.
,
Lee
L. J.
,
Keolling
K. W.
, and
Madou
M. J.
, “
Experimental Investigation and Numerical Simulation of Injection Molding With Micro-Features
,”
Polym. Eng. Sci.
, Vol.
42
, pp.
871
888
,
2002
.
124.
Yao
D.
and
Kim
B.
, “
Simulation of the Filling Process in Micro Channels for Polymeric Materials
,”
J. Micromechanics and Microengineering
, Vol.
12
, pp.
604
610
,
2002
.
This content is only available via PDF.
You do not currently have access to this content.