Tissue engineering is developing into a less speculative field involving the careful interplay of numerous design parameters and multi-disciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopaedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the U.S alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in Computer Aided Tissue Engineering (CATE) are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer aided design (CAD), optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. Our study represents a patient specific approach for constructing a complete vertebral body via building blocks. Though some of the methods described cannot be realized with current technology, namely complete construction of the vertebral body via FDM, the necessary advances are not far off. Computing power and CAD programs need to improve slightly to allow the rapid generation of complex models that would ease the fabrication of an appropriate number of building blocks. The main bottleneck of the process described in this study is the general lack of knowledge of human mechanobiology and the role of cellular interactions on artificial substrates including immune responses, and foreign body reactions. Assuming these biological parameters can be identified, a scaffold may be designed with a proper pore size and interconnectivity, microstructure, degradation rate, and surface chemistry. The advantage of the outlined process lies in adjustment of the vertebral compliance first, to ensure adequate load transfer, an important property for vertebral replacement. Subsequently, net biological properties can be fine tuned by simply scaling the final construct. Mixing and matching of geometries may be utilized to design asymmetric scaffolds, or scaffolds that exhibit a discontinuous microstructural stiffness with the goal of accentuating fluid flow. Finally, while these techniques lend themselves to the formulation of bone constructs, they can be used for other parts of the body as well that do not require load-bearing support.

1.
Riggs
B. L.
and
Melton
L. J.
, 3rd,
The worldwide problem of osteoporosis: insights afforded by epidemiology
.
Bone
,
1995
.
17
(
5 Suppl
): p.
505S–511S
505S–511S
.
2.
Dean
D.
,
Min
K. J.
, and
Bond
A.
,
Computer Aided Design of Large-Format Prefabricated Cranial Plates
.
J Craniofac Surg
,
2003
.
14
(
6
): p.
819
832
.
3.
Winder
J.
,
Cooke
R. S.
,
Gray
J.
,
Fannin
T.
, and
Fegan
T.
,
Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates
.
J Med Eng Technol
,
1999
.
23
(
1
): p.
26
8
.
4.
Kai
C. C.
,
Three-dimensional rapid prototyping technologies and key development areas
.
Computing & Control Engineering Journal
,
1994
.
5
(
4
): p.
200
206
.
5.
Davis, J., Till Death Do Us Part, in Wired. 2003. p. 110–120.
6.
Jacobs
C. R.
,
Davis
B. R.
,
Rieger
C. J.
,
Francis
J. J.
,
Saad
M.
, and
Fyhrie
D. P.
,
NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics
.
J Biomech
,
1999
.
32
(
11
): p.
1159
64
.
7.
Winslow
R. L.
and
Boguski
M. S.
,
Genome informatics: current status and future prospects
.
Circ Res
,
2003
.
92
(
9
): p.
953
61
.
8.
Sun W, S., B., Darling A., Gomez C., Computer Aided Tissue Engineering Part I: Overview, Scope and Challenges. Journal of Biotechnology and Applied Biochemistry, 2003.
9.
Borah
B.
,
Gross
G. J.
,
Dufresne
T. E.
,
Smith
T. S.
,
Cockman
M. D.
,
Chmielewski
P. A.
,
Lundy
M. W.
,
Hartke
J. R.
, and
Sod
E. W.
,
Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis
.
Anat Rec
,
2001
.
265
(
2
): p.
101
10
.
10.
Kai, C., Three-dimensional rapid prototyping technologies and key development areas. Computing and Control Engineering Journal, 1994: p. 200–206.
11.
Davidson
E. T.
,
Evans
J. G.
, and
Coble
Y. D.
,
Bone mineral density testing by DEXA
.
J Fla Med Assoc
,
1996
.
83
(
8
): p.
567
8
.
12.
Jones
L. M.
,
Goulding
A.
, and
Gerrard
D. F.
,
DEXA: a practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia
.
Spinal Cord
,
1998
.
36
(
9
): p.
637
40
.
13.
Markel
M. D.
,
Wikenheiser
M. A.
,
Morin
R. L.
,
Lewallen
D. G.
, and
Chao
E. Y.
,
Quantification of bone healing. Comparison of QCT, SPA, MRI, and DEXA in dog osteotomies
.
Acta Orthop Scand
,
1990
.
61
(
6
): p.
487
98
.
14.
Ito
M.
,
Hayashi
K.
,
Uetani
M.
,
Kawahara
Y.
,
Ohki
M.
,
Yamada
M.
,
Kitamori
H.
, and
Noguchi
M.
,
Bone mineral and other bone components in vertebrae evaluated by QCT and MRI
.
Skeletal Radiol
,
1993
.
22
(
2
): p.
109
13
.
15.
Webb
P. A.
,
A review of rapid prototyping (RP) techniques in the medical and biomedical sector
.
J Med Eng Technol
,
2000
.
24
(
4
): p.
149
53
.
16.
Prins
S. H.
,
Jorgensen
H. L.
,
Jorgensen
L. V.
, and
Hassager
C.
,
The role of quantitative ultrasound in the assessment of bone: a review
.
Clin Physiol
,
1998
.
18
(
1
): p.
3
17
.
17.
Mayo
J. R.
,
Aldrich
J.
, and
Muller
N. L.
,
Radiation exposure at chest CT: a statement of the Fleischner Society
.
Radiology
,
2003
.
228
(
1
): p.
15
21
.
18.
Wiest
P. W.
,
Locken
J. A.
,
Heintz
P. H.
, and
Mettler
F. A.
,
CT scanning: a major source of radiation exposure
.
Semin Ultrasound CT MR
,
2002
.
23
(
5
): p.
402
10
.
19.
Brody
A. S.
,
CT scanner design and patient radiation exposure
.
Pediatr Radiol
,
2002
.
32
(
4
): p.
268
71
.
20.
Kusnoto
B.
and
Evans
C. A.
,
Reliability of a 3D surface laser scanner for orthodontic applications
.
Am J Orthod Dentofacial Orthop
,
2002
.
122
(
4
): p.
342
8
.
21.
Kopperdahl
D. L.
,
Morgan
E. F.
, and
Keaveny
T. M.
,
Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone
.
J Orthop Res
,
2002
.
20
(
4
): p.
801
5
.
22.
Ulrich
D.
,
van Rietbergen
B.
,
Laib
A.
, and
Ruegsegger
P.
,
The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone
.
Bone
,
1999
.
25
(
1
): p.
55
60
.
23.
Gordon
R.
,
Bender
R.
, and
Herman
G. T.
,
Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography
.
J Theor Biol
,
1970
.
29
(
3
): p.
471
81
.
24.
Guan
H.
,
Gaber
M. W.
,
DiBianca
F. A.
, and
Zhu
Y.
,
CT reconstruction by using the MLS-ART technique and the KCD imaging system–I: low-energy X-ray studies
.
IEEE Trans Med Imaging
,
1999
.
18
(
4
): p.
355
8
.
25.
Templeton AK, C.D., Liebschner MAK, Updating a 3-D Vertebral Body Finite Element Model Using 2-D Images. Medical Engineering Physics (Submitted), 2003.
26.
Feinberg
S. E.
,
Hollister
S. J.
,
Halloran
J. W.
,
Chu
T. M.
, and
Krebsbach
P. H.
,
Image-based biomimetic approach to reconstruction of the temporomandibular joint
.
Cells Tissues Organs
,
2001
.
169
(
3
): p.
309
21
.
27.
Sun
W
and
Lal
P.
,
Recent development on computer aided tissue engineering–a review
.
Comput Methods Programs Biomed
,
2002
.
67
(
2
): p.
85
103
.
28.
Hollister
S. J.
,
Maddox
R. D.
, and
Taboas
J. M.
,
Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
.
Biomaterials
,
2002
.
23
(
20
): p.
4095
103
.
29.
Wettergreen MA, L.M. Scaffold Optimization for Load Bearing Applications, in Southern Biomedical Engineering Conference. 2002. Washington, DC: Medical and Engineering Publishers.
30.
Gibson LJ, A.M., Cellular Solids: Structure and Properties. 1988, Elmsford, New York 10523, USA: Pergamon Press.
31.
Starly B, L.W., Fang Z, Sun W. “Biomimetic” Model For Heterogeneous Bone Scaffold, in Southern Biomedical Engineering Conference. 2002. Washington, DC: Medical and Engineering Publishers.
32.
Keller
T. S.
,
Hansson
T. H.
,
Abram
A. C.
,
Spengler
D. M.
, and
Panjabi
M. M.
,
Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration
.
Spine
,
1989
.
14
(
9
): p.
1012
9
.
33.
Adachi
T.
,
Tsubota
K.
,
Tomita
Y.
, and
Hollister
S. J.
,
Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models
.
J Biomech Eng
,
2001
.
123
(
5
): p.
403
9
.
34.
Ruimerman
R.
,
Van Rietbergen
B.
,
Hilbers
P.
, and
Huiskes
R.
,
A 3-dimensional computer model to simulate trabecular bone metabolism
.
Biorheology
,
2003
.
40
(
1–3
): p.
315
20
.
35.
Toffoli T, Cellular Automata, in The Handbook of Brain Theory and Neural Networks, A. M, Editor. 1995, The MIT Press: Cambridge, Massachusetts. p. 166–169.
36.
McCubbrey
D. A.
,
Cody
D. D.
,
Peterson
E. L.
,
Kuhn
J. L.
,
Flynn
M. J.
, and
Goldstein
S. A.
,
Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density
.
J Biomech
,
1995
.
28
(
8
): p.
891
9
.
37.
Sun W, S., B., Darling A., Gomez C., Computer Aided Tissue Engineering Part II: Application to biomimetic modeling and design of tissues. Journal of Biotechnology and Applied Biochemistry, 2003.
38.
Asano
S.
,
Kaneda
K.
,
Umehara
S.
, and
Tadano
S.
,
The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements
.
Spine
,
1992
.
17
(
11
): p.
1343
52
.
39.
Yang
K. H.
and
King
A. I.
,
Mechanism of facet load transmission as a hypothesis for low-back pain
.
Spine
,
1984
.
9
(
6
): p.
557
65
.
40.
Jee, W.S.S., Integrated Bone Tissue Physiology: Anatomy and Physiology, in Bone Mechanics Handbook, S.C. Cowin, Editor. 2001, CRC Press: New York. p. 1-1 - 1-68.
41.
Yang
S.
,
Leong
K. F.
,
Du
Z.
, and
Chua
C. K.
,
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
.
Tissue Eng
,
2002
.
8
(
1
): p.
1
11
.
42.
Cooke
MN
,
Fisher
J.
,
Dean
D
,
Rimnac
C
,
Mikos
AG.
,
Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth
.
J Biomed Mater Res
,
2003
.
64B
(
2
): p.
65
69
.
43.
Landers
R.
,
Hubner
U.
,
Schmelzeisen
R.
, and
Mulhaupt
R.
,
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
.
Biomaterials
,
2002
.
23
(
23
): p.
4437
47
.
44.
Warren, W.L. Enabling Tools for Computer Aided Tissue Engineering, in Advances in Tissue Engineering. 2003. Houston, TX.
45.
Mironov
V.
,
Boland
T.
,
Trusk
T.
,
Forgacs
G.
, and
Markwald
R. R.
,
Organ printing: computer-aided jet-based 3D tissue engineering
.
Trends Biotechnol
,
2003
.
21
(
4
): p.
157
61
.
46.
Taboas
J. M.
,
Maddox
R. D.
,
Krebsbach
P. H.
, and
Hollister
S. J.
,
Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
.
Biomaterials
,
2003
.
24
(
1
): p.
181
94
.
47.
Liebschner, M.A.K., K. Sun, and M.A. Wettergreen, Conceptual Analysis of a Novel Bone Anchor System. Journal of Biomechanics, Submitted August 2003.
48.
Wettergreen MA, M.A., Liebschner MAK. Design of a Three-Dimensional Composite Scaffold with Varied Engineered Micro-Architecture, in Groupe de Recherche Interdisciplinaire sur les Biomateriaux Osteoarticulaires Injectables. 2003. Baltimore, MD.
49.
Prendergast, P.J., Bone Prostheses and Implants, in Bone Biomechanics Handbook, S.C. Cowin, Editor. 2001, CRC Press: New York. p. 35-1–35-29.
1.
Kotani
Y.
,
Cunningham
B. W.
,
Cappuccino
A.
,
Kaneda
K.
, and
McAfee
P. C.
,
The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study
.
Spine
,
1998
.
23
(
6
): p.
672
82
;
2.
Discussion
,
Spine
,
23
,
682
3
.
1.
Chu
K. T.
,
Oshida
Y.
,
Hancock
E. B.
,
Kowolik
M. J.
,
Barco
T.
, and
Zunt
S. L.
,
Hydroxyapatite/PMMA composites as bone cements
.
Biomed Mater Eng
,
2004
.
14
(
1
): p.
87
105
.
2.
Soffer
E.
,
Ouhayoun
J. P.
, and
Anagnostou
F.
,
Fibrin sealants and platelet preparations in bone and periodontal healing
.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod
,
2003
.
95
(
5
): p.
521
8
.
3.
Ono
K.
,
Shikata
J.
,
Shimizu
K.
, and
Yamamuro
T.
,
Bone-fibrin mixture in spinal surgery
.
Clin Orthop
,
1992
(
275
): p.
133
9
.
4.
Larsson
C.
,
Thomsen
P.
,
Aronsson
B. O.
,
Rodahl
M.
,
Lausmaa
J.
,
Kasemo
B.
, and
Ericson
L. E.
,
Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses
.
Biomaterials
,
1996
.
17
(
6
): p.
605
16
.
5.
Hutmacher
D. W.
,
Scaffold deisng and fabrication technologies for engineering tissues - state of the art and future perspectives
.
J Biomater Sci Polym Ed
,
2001
.
12
(
1
): p.
107
124
.
6.
Tan
K. H.
,
Chua
C. K.
,
Leong
K. F.
,
Cheah
C. M.
,
Cheang
P.
,
Bakar
M. S. Abu
, and
Cha
S. W.
,
Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
.
Biomaterials
,
2003
.
24
(
18
): p.
3115
23
.
7.
Fisher
J. P.
,
Holland
T. A.
,
Dean
D.
,
Engel
P. S.
, and
Mikos
A. G.
,
Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds
.
J Biomater Sci Polym Ed
,
2001
.
12
(
6
): p.
673
87
.
8.
Liebschner, M.A. and M.A. Wettergreen. Scaffold Optimization for Load Bearing Applications, in Southern Biomedical Engineering Conference. 2002. Bethesda, MD: Medical and Engineering Publishers.
9.
Therics, Inc. - Tissue Engineering and Orthopaedic Products. 2003.
10.
Sciperio Inc., A Science Revelation! 2003.
This content is only available via PDF.
You do not currently have access to this content.