Soldering is the default joining process in the electronic packaging industry. Solder joints are obtained by interaction of the substrate with the molten solder. Soldering reaction and the resulting dissolution of substrate material is a complicated process. Reliability and strength of solder joints during service have always been the critical issues in electronic packaging industry. Mechanical strength of solder joints can significantly be increased by employing composite solders. These composite solders are sometimes obtained by incorporation of micro- and nano-size metal particles in the solder paste before the soldering process. Better understanding of substrate-solder interaction is important for the proper selection of the reinforcing particle size and composition. In the present research the relative importance of interface reaction and diffusion has been studied. Dissolution kinetics of a planar substrate and spherical particles has been investigated. Our results show that the dissolution is governed both by interface kinetics and long-range diffusion. Non-equilibrium behavior has been observed in the early stage of the process. It has been observed that at the early stage the dissolution process is governed by interface kinetics, while diffusion became the rate controlling mechanism at the later phase. A mathematically rigorous model has been proposed for simulating the dissolution of the substrate in the liquid lead-free solders. The study is extended to investigate the dissolution of spherical particles in molten solders. The results show that the initial particle dimension plays a critical role in the end particle size after the reflow process.

1.
Rudolf Strauss, Surface Mount Technology, Butterworth-Heinemann Ltd., 1994.
2.
Suganuma
K.
,
2001
,
Advances in lead-free electronics soldering
,
Current Opinion in Solid State and Materials Science
, Vol.
5
, pp.
55
64
.
3.
Kim
H. K.
and
Tu
K. N.
,
1995
,
Rate of consumption of Cu in soldering accompanied by ripening
,
App. Phy. Letter
, Vol.
67
, pp.
2002
2004
.
4.
Korhonen
T. M.
,
Su
P.
,
Hong
S. J.
et. al.,
2000
,
Reaction of Lead-Free Solders with CuNi Metallizations
,
J. of Elec. Mat.
, Vol.
29
, pp.
1194
1199
.
5.
Ma
D.
,
Wang
W. D.
, and
Lahiri
S. K.
,
2002
,
Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow
,
J. of App. Phy.
, Vol.
91
, pp.
3312
3317
.
6.
Chen
S. W.
and
Yen
Y. W.
,
1999
,
Interfacial Reaction in Ag-Sn/Cu Couples
,
J. of Elec. Mat.
Vol.
28
, pp.
1203
1208
.
7.
Chan
Y. C.
,
Alex
C. K.
, and
Lai
J. K. L.
,
1998
,
Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints
,
Mat. Sci. & Eng. B
, Vol.,
B55
, pp.
5
13
.
8.
Lee
Y. G.
and
Duh
J. G.
,
1999
,
Interfacial morphology and concentration profile in the unleaded solder/Cu joint assembly
,
J. of Mat. Sci.
, Vol.
10
, pp.
33
43
.
9.
Silvain
J. F.
,
Chazelas
J.
,
Lahaye
M.
and
Trombert
S.
,
1999
,
The use of shape memory alloy NiTi particles in SnPbAg matrix: interfacial chemical analysis and mechanical characterization
,
Mat. Sci. & Eng. A
, Vol.
273–275
, pp.
818
823
.
10.
Fouassier
O.
,
Chazelas
J.
,
Silvian
J. F.
,
2002
,
Conception of consumable copper reaction zone for a NiTi/SnAgCu composite material
,
Composites: Part A
Vol.
33
, pp.
1391
1395
.
11.
Kim
H. K.
and
Tu
K. N.
,
1996
,
Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening
,
Phy. Rev. B
, Vol.
53
,
12
, pp.
16027
16034
.
12.
Whelan
M. J.
,
1969
,
Mat. Sci. J.
, Vol.
3
, pp.
95
97
.
13.
Baty
U. L.
,
Tanzilli
R. A.
and
Heckel
R. W.
,
1970
,
Solution kinetics of CuAl2 in an Al-4Cu alloy
,
Metal. Tran.
, Vol.
1
, pp.
1651
1651
.
14.
Tundal
U. H.
and
Ryum
N.
,
1992
,
Dissolution of particles in binary alloys: Part I. computer simulation
,
Metal. Tran.
, Vol.
23A
, pp.
433
433
.
15.
Nolfi
F. V.
,
Shewmon
P. F.
and
Foster
J. S.
,
1969
,
Dissolution and growth kinetics of spherical precipitates
,
Tran. Met. Soc. AIME
, Vol.
245
, pp.
1427
1427
.
16.
Aaron
H. B.
and
Kotler
G. R.
,
1971
,
Metal. Tran.
, Vol.
2
, pp.
393
393
.
17.
Vermolin
F. J.
and
van der Zwaag
S.
,
1996
,
A numerical model for the dissolution of spherical particles in binary alloys under mixed mode control
,
Mat. Sci. & Eng. A
, Vol.
220
, pp.
140
146
.
18.
Hu
C. K.
,
Huntington
H. B.
, and
Gruzalski
G. R.
,
1983
,
Phy. Rev. B
, Vol.
28
, pp.
579
579
.
19.
Wang
G.-X.
,
Prasad
V.
and
Matthys
E. F.
,
1997
,
An interface-tracking method for rapid planar solidification of binary alloys with application to microsegregation
,
Mat. Sci. & Eng. A
, Vol.
225
, pp.
47
58
.
20.
Faizan M., McCoy R. A., Lin D. C., and Wang G.-X., 2003, An investigation of copper dissolution and microstructural development in lead-free solders, Proceedings of ASME IMECE.
21.
Faizan M., McCoy R. A., Lin D. C., Srivatsan T. S. and Wang G.-X., 2003, An Investigation of Copper Dissolution and Formation of Intermetallic Compound During Soldering, Proceedings of ASME Summer Heat Transfer Conference.
22.
Vermolin
Vuik F. J. C.
and
van der Zwaag
S.
,
2002
,
A mathematical model for the dissolution of stoichiometric particles in multi-component alloys
,
Mat. Sci. & Eng. A
, Vol.
328
, pp.
14
25
.
23.
Wang
G.-X.
and
Matthys
E. F.
,
1996
,
Modeling of non-equilibrium surface melting and resolidification of binary alloys with application to microsegregation
,
J. of Heat Transfer
, Vol.
118
, pp.
944
951
.
24.
Moon
K.-W.
,
Boettiner
W. J.
,
Kattner
U. R.
,
Biancaniello
F. S.
and
Handwerker
C. A.
,
2000
,
Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys
,
J. of Elec. Mat.
, Vol.
29
, pp.
1122
1136
.
This content is only available via PDF.
You do not currently have access to this content.