Traditional Statistical Process Control (SPC) has been widely employed for process monitoring in discrete part manufacturing. However, control charts do not consider any adjustment preventing the process drift from target. Furthermore, many in-line adjustment approaches, such as thermal error compensation and avoidance, are designed only for machine tool error reduction. This paper intends to fully utilize the engineering process information and to propose a control algorithm that can automatically reduce the overall process variations. Considering three types of error sources in a machining process, we propose to use fixture locators to introduce process adjustment based on our previously proposed Equivalent Fixture Error (EFE) concept. The dynamic property of EFE is investigated for feedback adjustment of both kinematic and quasi-static errors in machining processes. A Minimum-Mean-Square-Error (MMSE) controller is designed based on the dynamic EFE model. We then evaluate the performance of the controller such as stability and sensitivity. Self-updating algorithm for controller has been proposed to track the latest process information as well. Finally, we simulate this process adjustment using the data collected from a real machining process. The results show that this algorithm can effectively improve the machining accuracy and reduce the process variations.

1.
Box
 
G. E. P.
,
1957
, “
Evolutionary operation: A method for increasing industrial productivity
,”
Applied Statistics
,
6
, pp.
81
101
.
2.
Box, G. E. P., Draper, N. R., 1969, “Evolutionary operation. A statistical method for process improvement,” John Wiley & Sons.
3.
Box, G. E. P., and Jenkins, G. M., 1963, “Further Contributions to Adaptive Quality Control: Simultaneous Estimation of Dynamics: Non-zero Costs,” Bulletin of the International Statistics Institute, 34th Session, Ottawa, pp. 943–974.
4.
Box, G. E. P., and Jenkins, G. M., 1970, Time Series Analysis Forecasting and Control, Oakland, CA: Holden-Day.
5.
Box
 
G. E. P.
, and
Kramer
 
T.
,
1992
, “
Statistical Process Monitoring and Feedback Adjustment- A Discussion
,”
Technometrics
,
34
, pp.
251
285
.
6.
Astrom, K. J., 1970, Introduction to Stochastic Control Theory, New York: Academic Press
7.
Astrom, K. J., and Wittenmark, B., 1990, Computer Controlled Systems: Theory and Design, 2nd edn., Prentice Hall, Englewood Cliffs, NJ.
8.
Wardell
 
D. G.
,
Moskowitz
 
H.
, and
Plante
 
R. D.
,
1992
, “
Control charts in the presence of data correlation
,”
Management Science
,
38
, pp.
1084
1105
.
9.
Tsung
 
F.
,
2000
, “
Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA
,”
International Journal of Production Research
,
3
8
, pp.
625
637
.
10.
Astrom, K. J., 1988, Automatic Tuning of PID Controllers, Instrument Society of America, Research Triangle Park, NC.
11.
MacGregor
 
J. F.
,
1988
, “
Online-line Statistical Process Control
,”
Chemical Engineering Process
,
10
, pp.
21
31
.
12.
Box
 
G. E. P.
, and
Kramer
 
T.
,
1992
, “
Statistical Process Monitoring and Feedback Adjustment- A Discussion
,”
Technometrics
,
34
, pp.
251
285
.
13.
English
 
J. R.
, and
Case
 
K. E.
,
1990
, “
Control Charts applied as filtering devices within a feedback loop
,”
IIE Transactions
,
26
, pp.
255
269
.
14.
Del Castillo
 
E.
,
1996
, “
A multivariate self-tuning controller for run-to-run process control under shift and trend disturbances
,”
IIE Transactions
,
28
, pp.
22
28
.
15.
Vander Wiel
 
S. A.
,
Tucker
 
W. T.
,
Faltin
 
F. W.
, and
Doganaksoy
 
N.
,
1992
, “
Algorithmic Statistical Process Control: Concepts and Application
,”
Technometrics
,
34
, pp.
286
297
.
16.
Tucker
 
W. T.
,
Faltin
 
F. W.
, and
Vander Wiel
 
S. A.
,
1993
, “
Algorithmic Statistical Process Control: An Elaboration
,”
Technometrics
,
35
, pp.
363
375
.
17.
MacGregor
 
J. F.
, and
Harris
 
T. J.
,
1990
, “
Discussion of Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements
,”
Technometrics
,
32
, pp.
1
29
.
18.
Harris
 
T. J.
, and
Ross
 
W. H.
,
1991
, “
Statistical Process Control Procedures for Correlated Observations
,”
Canadian Journal of Chemical Engineering
,
69
, pp.
48
57
.
19.
MacGregor
 
J. F.
,
1991
, “
Discussion of Some Statistical Process Control Methods for Autocorrelated Data by D. C. Montgomery and C. M. Mastrangelo
,”
Journal of Quality Technology
,
23
, pp.
198
199
.
20.
Messina, W. S., Montgomery, D. C., Keats, J. B., and Runger, G. C., 1996, “Strategies for Statistical Monitoring of Integral Control for the Continuous Process Industries,” Statistical Applications in Process Control, New York, pp. 193–215.
21.
Tsung
 
F.
,
Shi
 
J.
, and
Wu
 
C. F. J.
,
1999
, “
Joint Monitoring of PID-Controlled Processes
,”
Journal of Quality Technology
,
31
, pp.
275
285
.
22.
Butler
 
S. W.
, and
Stefani
 
J. A.
,
1994
, “
Supervisory Runto-Run Control of Polysilicon Gate Etch Using in Situ Ellipsometry
,”
IEEE Transactions on Semiconductor Manufacturing
,
7
, pp.
193
201
.
23.
Mozumder
 
P. K.
,
Saxena
 
S.
, and
Collins
 
D. J.
,
1994
, “
A monitor wafer based controller for semiconductor processes
,”
IEEE Transactions on Semiconductor Manufacturing
,
7
, pp.
400
410
.
24.
Sachs
 
E.
,
Hu
 
A.
, and
Ingolfsson
 
A.
,
1995
, “
Run-by-Run Process Control: Combining SPC and Feedback control
,”
IEEE Transactions on Semiconductor Manufacturing
,
8
, pp.
26
43
.
25.
Tsung
 
F.
, and
Shi
 
J.
,
1999
, “
Integrated design of run-torun PID controller and SPC Monitoring for Process Disturbance Rejection
,”
IIE Transactions
,
31
, pp.
517
527
.
26.
Del Castillo
 
E.
, and
Hurwitz
 
A.
,
1997
, “
Run-to-Run Process Control: Literature Review and Extensions
,”
Journal of Quality Technology
,
29
, pp.
184
196
27.
Liang
 
S. Y.
, and
Dornfeld
 
D. A.
,
1989
, “
Detection of Cutting Tool Wear Using Time Series Modeling of Acoustic Emission Signals
,”
ASME Transactions, Journal of Engineering for Industry
,
111
, pp.
199
205
.
28.
Ulsoy
 
A. G.
, and
Koren
 
Y.
,
1993
, “
Control of Machining Processes
,”
ASME Transactions, Journal of Dynamic Systems, Measurement, and Control
,
115
, pp.
301
308
.
29.
Chen
 
J. S.
,
Yuan
 
J. X.
,
Ni
 
J.
, and
Wu
 
S. M.
,
1993
, “
Realtime Compensation for Time-variant Volumetric Errors on a Machining Center
,”
ASME Transactions, Journal of Engineering for Industry
,
115
, pp.
472
479
.
30.
Yang
 
H.
, and
Ni
 
J.
,
2003
, “
Dynamic Modeling for Machine Tool Thermal Error Compensation
,”
ASME Transactions, Journal of Manufacturing Science and Engineering
,
125
, pp.
245
254
.
31.
Donmez
 
M. A.
,
Blomquist
 
D. S.
,
Hocken
 
R. J.
,
Liu
 
C. R.
, and
Barash
 
M. M.
,
1986
, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precision Engineering
,
8
, pp.
187
196
.
32.
Mou
 
J.
,
Donmez
 
M. A.
, and
Centinkunt
 
S.
,
1995
, “
An Adaptive Error Correction Method Using Feature- Based Analysis Techniques for Machine Performance Improvement, Part 1: Theory Derivation, & Part 2: Experimental Verification
,”
ASME Transactions, Journal of Engineering for Industry
,
117
, pp.
584
600
.
33.
Wang
 
H.
,
Huang
 
Q.
, and
Katz
 
R.
,
2005
, “
Multi-Operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME Transactions, Journal of Manufacturing Science and Engineering
,
127
, pp.
512
521
.
1.
Huang
 
Q.
,
Shi
 
J.
, and
Yuan
 
J.
,
2003
, “
Part Dimensional Error and its Propagation Modeling in Multi-Operational Machining Processes
,”
ASME Transactions, Journal of Manufacturing Science and Engineering
,
125
, pp.
255
262
.
2.
Also appeared in Proc. 2000 ASME Int. Mech. Eng. Congress & Exposition, MED-Vol. 11, pp. 81–88, November 5–10, Orlando, FL.
1.
Djurdjanovic, D. and Ni, J., 2001, “Linear State Space Modeling of Dimensional Machining Errors,” NAMRI/SME, XXIX, pp. 541–548.
2.
Zhou
 
S.
,
Huang
 
Q.
, and
Shi
 
J.
,
2003
, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Transaction on Robotics and Automation
,
19
, pp.
296
309
.
3.
Wang, H., and Huang, Q., 2005, “Error Cancellation Modeling and Its Application in Machining Process Control,” Submitted to IIE Transactions on Quality & Reliability.
4.
Wang, H., Huang, Q., and Yang, H., 2005, “Latent Variable Modeling and In-line Monitoring of Machine Tool Thermal Errors,” submitted to Journal of Manufacturing System.
5.
Capilla
 
C.
,
Ferrer
 
A.
, and
Romero
 
R.
,
1999
, “
Integration of Statistical and Engineering Process Control in a Continuous Polymerization Process
,”
Technometrics
,
41
, pp.
14
28
.
This content is only available via PDF.
You do not currently have access to this content.