Nanostructuring of thin films is gaining widespread importance owing to ever-increasing applications in a variety of fields. The current study details nanosecond laser-based rapid melting and crystallization of thin amorphous silicon (a-Si) films at the nanoscale. Two different near-field processing schemes were employed. In the first scheme, local field enhancement in the near-field of a SPM probe tip irradiated with nanosecond laser pulses was utilized. As a second approach, the laser beam was spatially confined by a cantilevered near field scanning microscope tip (NSOM) fiber tip. Details of various modification regimes produced as a result of the rapid a-Si melting and crystallization transformations that critically depend on the input laser fluence are presented. At one extreme corresponding to relatively high applied fluence, ablation area surrounded by a narrow melt region was observed. At the other extreme, where the incident laser energy density is much lower, single nanostructures with a lateral dimension of ~90 nm were defined. The ability to induce nucleation and produce single semiconductor nanostructures in a controlled fashion may be crucial in the field of nano-opto-electronics.

1.
Sameshima
T.
,
Usui
S.
,
Mater. Res. Soc. Symp. Proc.
71
,
435
435
(
1986
).
2.
Lee
M.
,
Moon
S.
,
Hatano
M.
,
Suzuki
K.
, and
Grigoropoulos
C. P.
,
J. Appl. Phys.
88
(
9
),
4994
4994
(
2000
).
3.
Sposili
R. S.
,
Im
J. S.
,
Appl. Phys. Lett.
69
,
2864
2864
(
1996
).
4.
Brotherton
S. D.
et al.,
Thin Solid Films
337
,
188
188
(
1999
).
5.
Aichmayr
G.
et al.,
J. Non-Crys. Solids
227–230
,
921
921
(
1998
).
6.
Im
J. S.
,
Sposili
R. S.
, and
Crowder
M. A.
,
Appl. Phys. Lett.
70
,
3434
3434
(
1997
).
7.
Ishikawa
K.
,
Ozawa
M.
,
Ho
C.-H.
, and
Matsumura
M.
,
Jpn. J. Appl. Phys.
, Part 1
37
,
731
731
(
1998
).
8.
Kim
H. J.
and
Im
J. S.
,
Appl. Phys. Lett.
68
,
1513
1513
(
1996
).
9.
Ho
C.-H.
,
Ozawa
M.
, and
Matsumura
M.
,
Jpn. J. Appl. Phys.
, Part 2
37
,
l492
l492
(
1998
)
10.
Rezek
B.
,
Nebel
C. E.
, and
Stutzmann
M.
,
Jpn. J. Appl. Phys.
, Part 2
38
,
L1083
L1083
(
1999
).
11.
Chimmalgi
A.
,
Choi
T. Y.
,
Grigoropoulos
C. P.
, and
Komvopoulos
K.
,
Appl. Phys. Lett.
,
82
(
8
),
1146
1146
(
2003
).
12.
Jersch
J.
,
Demming
F.
, and
Dickmann
K.
,
Appl. Phys. A
,
64
,
29
29
(
1997
).
13.
Huang
S. M.
,
Hong
M. H.
,
Lu
Y. F.
,
Lukyanchuk
B. S.
,
Song
W. D.
, and
Chong
T. C.
,
Appl. Phys.
,
91
,
3268
3268
(
2002
).
14.
Kim
J.
et al.,
Jpn. J. Appl. Phys.
, Part 1
41
(
8
),
5222
5222
(
2002
).
15.
T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography, PhD Thesis, Department of Electrical Engineering and Computer Science, University of California at Berkeley (2001).
This content is only available via PDF.
You do not currently have access to this content.