An alternative discretization and solution procedure for implicitly solving a 3-D microscale heat transport equation during femtosecond laser heating of nanoscale metal films has been developed (Kunadian et al. [1]). The proposed numerical technique directly solves a single partial differential equation, unlike other techniques available in the literature which splits the equation into a system of two equations and then apply discretization. The present paper investigates performance of its split and unsplit methods of solution via numerical experiments using Gauss–Seidel, conjugate gradient, generalized minimal residual and δ-form Douglas–Gunn time-splitting methods to compare the computational cost involved in these methods. The comparison suggests that the unsplit method [1] employing δ-form Douglas–Gunn spatial time-splitting is the most efficient way in terms of CPU time taken to complete the simulation of solving the 3-D time dependent microscale heat transport equation.

1.
Kunadian, I., McDonough, J. M., Kumar, R. R., 2005, An efficient numerical procedure for solving a microscale heat transport equation during femtosecond laser heating of nanoscale metal films, InterPACK ’05, San Francisco, CA, USA.
2.
Vernotte
P.
,
1958
,
Les panadoxes de la theorie continue de l’equation de la chaleur
,
C.R. Acad. Sci. Paris
,
246
, pp.
3154
3155
.
3.
Cattaneo
M. C.
,
1958
,
Sur une forme de l’equation de la chaleur eliminant le paradox d’une propagation instantanee
,
Comptes Rendus Hebd. Seances Acad. Sci.
,
247
, pp.
431
433
.
4.
Taitel
Y.
,
On the Parabolic, hyperbolic and discrete formulation of the heat conduction equation
,
International Journal of Heat and Mass Transfer
,
15
,
369
369
(
1972
).
5.
Qiu
T. Q.
,
Tien
C. L.
,
Short-pulse laser heating on metals
,
International Journal of Heat and Mass Transfer
,
35
,
719
719
(
1992
).
6.
Qiu
T. Q.
,
Tien
C. L.
,
Heat transfer mechanisms during short-pulse laser heating of metals
,
ASME Journal of Heat Transfer
,
115
,
835
835
(
1993
).
7.
Anisimov
S. I.
,
Kapeliovich
B. L.
, and
Perel’man
T. L.
,
Electron emission from metal surfaces exposed to ultrashort laser pulses
,
Sov. Phys. JETP
,
39
,
375
375
(
1974
).
8.
D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington, DC (1996).
9.
D. Y. Tzou, A unified approach for heat conduction from macro-to micro scales, ASME Journal of Heat Transfer, 117, 8 (1995).
10.
Tzou
D. Y.
,
The generalized lagging response in smallscale and high-rate heating
,
International Journal of Heat and Mass Transfer
,
38
,
3231
3231
(
1995
).
11.
Tzou
D. Y.
,
Experimental support for lagging behavior in heat propagation
,
J. Thermophysics and Heat transfer
,
9
,
686
686
(
1995
).
12.
Guyer
R. A.
, and
Krumhansl
J. A.
,
1966
,
Solution of the linearized Boltzmann equation
,
Physical Review
,
148
, pp.
766
778
.
13.
Dai
W.
, and
Nassar
R.
,
A finite difference method for solving the heat transport equation at the microscale
,
Numer. Methods Partial Differential Equations
,
15
,
698
698
(
1999
).
14.
Dai
W.
, and
Nassar
R.
,
A compact finite difference scheme for solving a one-dimensional heat transport equation at the microscale
,
Journal of Computational and Applied Mathematics
,
132
,
431
431
(
2001
).
15.
Dai
W.
, and
Nassar
R.
,
A finite difference scheme for solving a three dimensional heat transport equation in a thin film with microscale thickness
,
International Journal for Numerical Methods in Engineering
,
50
,
1665
1665
(
2001
).
16.
Dai
W.
, and
Nassar
R.
,
An unconditionally stable finite difference scheme for solving 3-D heat transport equation in a sub-microscale thin film
,
Journal of Computational and Applied Mathematics
,
145
,
247
247
(
2002
).
17.
Dai
W.
, and
Nassar
R.
,
A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film
,
Numerical Methods for Partial Differential Equations
,
16
,
441
441
(
2000
).
18.
Lee
M.
,
Alternating direction and semi-explicit difference scheme for parabolic partial differential equations
,
Numer Math
,
3
, pp.
398
412
(
1961
).
19.
Zhang
J.
,
Zhao
J. J.
,
Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation
,
Journal of Computational Physics
,
170
, pp.
261
275
(
2001
).
20.
Zhang
J.
,
Zhao
J. J.
,
Iterative solution and finite difference approximations to 3D microscale heat transport equation
,
Mathematics and Computers in Simulation
,
57
,
387
387
(
2001
).
21.
K. S. Chiu, Temperature dependent properties and microvoid in thermal lagging, Ph. D. Dissertation, University of Missouri-Columbia, Columbia, Missouri (1999).
22.
Douglas
J.
,
Gunn
J. E.
,
A general formulation of alternating direction methods
,
Numer. Math.
6
,
428
428
(
1964
).
23.
Brorson
S. D.
,
Kazeroonian
A.
,
Moodera
J. S.
,
Face
D. W.
,
Cheng
T. K.
,
Ippen
E. p.
,
Dresselhaus
M. S.
, and
Dresselhaus
G.
,
1990
,
Femtosecond room temperature measurements of the electron-phonon coupling constant λ in metallic superconductors
,
Phys. Rev. Lett.
,
64
, pp.
2172
2175
.
This content is only available via PDF.
You do not currently have access to this content.