Due to their extremely high thermal conductivity, carbon nanotubes (CNTs) have received many research interests for thermal management applications. An advanced thermal interface structure made by two opposing, partially over-lapped CNT arrays is designed for thermally connecting two contact surfaces. The performance of this interface structure is thermally characterized using diffraction-limited infrared microscopy. Significant temperature discontinuities are found at the end of the CNT-CNT contact region, which indicates a large thermal resistance between CNTs. Due to this inter-tube resistance, the thermal performance of the CNT-based interface structure is far below expectation, with a thermal resistance value of about 3.8 × 10−4 K·m2/W. Possible mechanisms of heat transfer between CNTs, which result in the large inter-tube resistance, are discussed.

1.
Iijima
S.
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
, vol.
354
, pp.
56
56
,
1991
.
2.
Hone
J.
,
Whitney
M.
,
Piskoti
C.
,
Zettl
A.
, “
Thermal Conductivity of Single-walled Nanotubes
,”
Physical Review B
, vol.
59
, no.
4
, pp.
2514
2516
,
1999
.
3.
Kim
P.
,
Shi
L.
,
Majumdar
A.
,
McEuen
P. L.
, “
Thermal Transport Measurements of Individual Multiwall Nanotubes
,”
Physical Review Letters
, vol.
87
(
1–4
, pp.
215502
215502
),
2001
.
4.
C. Yu, W. Jiang, T. Hanrath, D. Kim, Z. Yao, B. Korgel, L. Shi, Z. L. Wang, D., Li, A. Majumdar, “Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures,” Proc ASME Summer Heat Transfer Conference, HT2003-47263, pp. 1–6, 2003.
5.
Berber
S.
,
Kwon
Y. K.
,
Tomanek
D.
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Physical Review Letters
, vol.
84
, no.
20
, pp.
4613
4617
,
2000
.
6.
Choi
S. U. S.
,
Zhang
Z. G.
,
Yu
W.
,
Lockwood
F. E.
,
Grulke
E. A.
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Applied Physics Letters
, vol.
79
, no.
14
, pp.
2252
2254
,
2001
.
7.
Biercuk
M. J.
,
Llaguno
M. C.
,
Radosavljevic
M.
,
Hyun
J. K.
,
Johnsond
A. T.
,
Fischer
J. E.
, “
Carbon Nanotube Composites for Thermal Management
,”
Applied Physics Letters
, vol.
80
, no.
15
, pp.
2667
2769
,
2002
.
8.
X. Hu, L. Jiang, K. E. Goodson, “Thermal Conductance Enhancement of Particle-filled Thermal Interface Materials Using Carbon Nanotube Inclusions,” Proc 9th Intersociety Conf on Thermal and Thermomechanical Phenomena in Electronic System, vol. 1, pp. 63–69, 2004.
9.
Huxtable
S. T.
,
Cahill
D. G.
,
Shenogin
S.
,
Xue
L. P.
,
Ozisik
R.
,
Barone
P.
,
Usrey
M.
,
Strano
M. S.
,
Siddons
G.
,
Shim
M.
, et al, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Materials
, vol.
2
, no.
11
, p.
731
734
,
2003
.
10.
Nan
C. W.
,
Liu
G.
,
Lin
Y. H.
,
Li
M.
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Applied Physics Letters
, vol.
85
, no.
16
, pp.
3549
3551
,
2004
.
11.
Shenogin
S.
,
Xue
L. P.
,
Ozisik
R.
,
Keblinski
P.
,
Cahill
D. G.
, “
Role of Thermal Boundary Resistance on The Heat Flow in Carbon-nanotube Composites
,”
Journal of Applied Physics
, vol.
95
, no.
12
, p.
8136
8144
,
2004
.
12.
S. W. Montgometry, V. R., Holalkere, “Carbon nanotube Thermal Interface Structures,” US patent publication # US20030117770, 2003.
13.
J. Xu, T. S. Fisher, “Thermal Contact Conductance Using Carbon Nanotube Arrays,” Proc 9th Intersociety Conf on Thermal and Thermomechanical Phenomena in Electronic System, vol. 2, pp. 549–555, 2004.
14.
Ngo
Q. X.
,
Cruden
B. A.
,
Cassell
A. M.
,
Sims
G.
,
Li
J.
,
Meyyappan
M.
,
Yang
C. Y.
, “
Nano-engineered Multiwall Carbon Nanotube-Copper Composite Thermal Interface Material for Efficient Heat Conduction
,”
JOM
, vol.
56
, no.
11
, pp.
153
154
,
2004
.
15.
Chuang
H. F.
,
Cooper
S. M.
,
Meyyappan
M.
,
Cruden
B. A.
, “
Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,”
Journal of Nanoscience and Nanotechnology
, vol.
4
, no.
8
, pp.
964
967
,
2004
.
16.
J. L. Sample, K. J. Rebello, H. Saffarian, R. Osiander, “Carbon Nanotube Coatings for Thermal Control,” Proc 9th Intersociety Conf on Thermal and Thermomechanical Phenomena in Electronic System, Las Vegas, NV, 2004.
17.
X. Hu, A. A. Padilla, J. Xu, T. S. Fisher, K. E. Goodson, “Thermal Characterization of Vertically-oriented Carbon Nanotubes on Silicon,” Proc 21th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, pp. 292–297, 2005.
18.
T. Tong, Y. Zhao, L. Delzeit, A. Kashani, A. Majumdar, “Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials,” Proc Integrated Nanosystems:Design, Synthesis & Applications Conf, 2004.
19.
X. Hu, L. Jiang, K. E. Goodson, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions,” Proc 20th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, pp. 98–103, 2004.
20.
F. P. Incropera, D. P. DeWitt, “Introduction to Heat Transfer,” 3rd Ed., John Wiley & Sons, 1996.
This content is only available via PDF.
You do not currently have access to this content.