Nanofluids that consist of nanometer sized particles and fibers dispersed in base liquids have shown the potential to enhance the heat transfer performance. Although three features of nanofluids including anomalously high thermal conductivities at very low nanoparticle concentrations, strongly temperature dependent thermal conductivity and significant increases in critical heat flux have been studied widely, and layering of liquid molecules at the particle-liquid interface, ballistic nature of heat transport in nanoparticles, and nanoparticle clustering are considered as the possible causations responsible for such kind of heat transfer enhancement, few research work from atomic-scale has been done to verify or explain those fascinating features of nanofluids. In this paper, a molecular dynamic model, which incorporates the atomic interactions for silica by BKS potential with a SPC/E model for water, has been established. To ensure the authenticity of our model, the position of each atom in the nanoparticle is derived by the crystallographic method. The interfacial interactions between the nanoparticle and water are simplified as the sum of interaction between many ions. Due to the electrostatic interaction, the ions on the nanoparticle’s surface can attract a certain number of water molecules, therefore, the effect of interaction between the nanoparticle and water on heat transfer enhancement in nanofluids is studied. By using Green-Kubo equations which set a bridge between thermal conductivity and time autocorrelation function of the heat current, a model which may derive thermal conductivity of dilute nanofluids that consist of silica nanoparticles and pure water is built. Several simulation results have been provided which can reveal the possible mechanism of heat enhancement in nanofluids.

1.
Choi SUS (1995) Enhancement Thermal Conductivity of Fluids with Nanoparticles. FED-Vol. 231/MD-Vol. 66: 99–103
2.
Wang
XW
,
Xu
XF
and
Choi
SUS
(
1999
)
Thermal Conductivity of Nanoparticle-Fluid Mixture
,
J. of Thermo. Heat Trans
,
13
:
474
480
, 1999
3.
Vassallo
P.
,
Kumar
R.
, and
D’Amico
S.
(
2004
)
Pool boiling heat transfer experiments in silica-water nanofluids
,
Int. J. Heat Mass Trans.
47
:
407
411
.
4.
Xuan
Y
and
Li
Q
(
2000
)
Transfer Enhancement of nanofluids
.
Int. J. of Heat & Flow
21
:
58
64
5.
Keblinski
P.
, et al, (
2002
)
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
,
Int. J. Heat & Mass Transfer
,
45
:
855
863
6.
Bhattacharya
P.
,
Saha
S. K.
,
Yadav
A.
,
Phelan
, and
Prasher
P. E.
, R. S. (
2004
)
Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids
,
J. Appl. Phys.
95
:
6492
6494
7.
Xue
L.
,
Keblinski
P.
,
Phillpot
S. R.
,
Choi
S. U.-S.
and
Eastman
J. A.
(
2004
)
Effect of liquid layering at the liquid-solid interface on thermal transport
,
Int. J. Heat Mass Trans.
,
47
:
4277
4284
8.
http://cst-www.nrl.navy.mil/lattice/struk/sio2a.html
9.
Vladimir
V. M.
, (
1999
)
Thermal conductivity of model zeolites: molecular dynamics simulation study
,
J. Phys.: Condens. Matter
11
:
1261
1271
.
10.
McGaughey
A. J. H.
and
Kaviany
M.
, (
2004
)
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Structures
,
Int. J. Heat and Mass Transfer
,
47
:
1799
1799
.
11.
Jund
Philippe
and
Jullien
Re´mi
(
1999
)
Molecular dynamics calculation of the thermal conductivity of vitreous silica
,
Phys. Rev. B
,
59
:
13707
13707
12.
Kramer
G. J.
,
Farragher
N. P.
,
van Beest
B. W. H.
and
van Santen
R. A.
(
1991
)
Interatomic force fields for silicas, aluminophosphates, and zeolites: Derivation based on ab initio calculations
,
Phys. Rev. B
,
43
:
5068
5068
13.
A. Ben-Naim and F. H. Stillinger, Aspects of the Statistical-Mechanical Theory of Water, in Structure and Transport Processes in Water and Aqueous Solutions (ed. R. A. Horne), Wiley-Interscience, New York, 1972.
14.
Stillinger
F. H.
and
Rahman
A.
(
1974
)
Improved Simulation of Liquid Water by Molecular Dynamics
,
J. Chem. Phys.
,
60
:
1545
1557
15.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Hermans, in Intermolecular Forces (ed. B. Pullmann), Reidel, Dordrecht, pp. 331–, 1981.
16.
Jorgensen
W. L.
,
Chandrasekhar
J.
,
Madura
J. D.
,
Impey
R. W.
and
Klein
M. L.
(
1983
)
Comparison of Simple Potential Functions for Simulating Liquid Water
,
J. Chem. Phys.
,
79
:
926
935
17.
Hautman
J.
,
Halley
J. W.
and
Rhee
Y. J.
(
1989
)
Molecular dynamics simulation of water between two ideal classical metal walls
,
J. Chem. Phys.
91
:
467
467
18.
Valleau
J. P.
and
Gardner
A. A.
(
1987
)
Water-like particles at surfaces. I. The uncharged, unpolarized surface
,
J. Chem. Phys.
,
86
:
4162
4162
19.
Somers
S. A.
and
Davis
H. T.
(
1992
)
Microscopic dynamics of fluids confined between smooth and atomically structured solid surface
,
J. Chem. Phys.
,
96
:
5389
5389
20.
Poulikakos
D.
,
Arcidiacono
S.
and
Maruyama
S.
(
2003
)
Molecular Dynamics Simulation in Nanoscale Heat Transfer: A Review
,
Micro. Thermophys. Eng.
,
7
:
181
181
21.
Maruyama
S.
,
Kimura
T.
and
Lu
M. C.
(
2002
)
Molecular Scale Aspects of Liquid Contact on a Solid Surface
,
Therm. Sci. Eng.
,
10
:
23
23
22.
Maruyama
S.
,
Matsumoto
S.
and
Ogita
A.
(
1994
)
Surface Phenomena of Molecular Clusters by Molecular Dynamics Method
,
Therm. Sci. Eng.
,
2
:
77
77
23.
Maruyama
S.
,
Kurashige
T.
,
Matsumoto
S.
,
Yamaguchi
Y.
and
Kimura
T.
(
1998
)
Liquid Droplet in Contact with a Solid Surface
,
Micro. Thermophys. Eng.
,
2
:
49
49
24.
Ohara
T
and
Suzuki
D.
(
2000
)
Intermolecular energy transfer at a solid-liquid interface
,
Micro. Thermophys. Eng.
,
4
:
189
189
25.
Hawa
T.
and
Zachariah
M. R.
(
2004
)
Molecular dynamics study of particle-particle collisions between hydrogen-passivated silicon nanoparticles
,
Phys. Rev. B
,
69
:
035417
035417
26.
Kohen
D.
,
Tully
J. C.
, and
Stillinger
F. H.
(
1998
)
Modeling the interaction of hydrogen with silicon surfaces
,
Surf. Sci.
397
:
225
225
27.
Sprik
M.
,
Klein
M. L.
(
1998
)
A polarizable model for water using distributed charge sites
,
J. Chem. Phys.
89
:
7556
7556
.
28.
Caldwell
J.
,
Dang
L. X.
,
Kollman
P. A.
(
1990
)
Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions
,
J. Am. Chem. Soc.
112
:
9144
9144
.
29.
Rick
S. W.
,
Stuart
S. J.
,
Berne
B. J.
(
1994
)
Dynamical fluctuating charge force fields: Application to liquid water
,
J. Chem. Phys.
101
:
6141
6141
.
30.
Demontis
P.
,
Spann
S.
and
Suffritti
G. B
(
2001
)
Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminosilicates and water
,
J. Chem. Phys.
114
:
7980
7980
31.
Florian
M.
(
1997
)
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
,
J. Chem. Phys.
,
106
:
6082
6082
32.
Hulse, R.J., Rowley, R.L. and Wilding, W.V., Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids, Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003
33.
Konstantin
V. T.
and
Sandro
S.
(
2004
)
Thermal conductivity of solid argon from molecular dynamic simulations
,
J. Chem. Phys.
,
120
:
3765
3765
34.
Young
H. L.
,
Biswas
R.
,
Soukoulis
C. M.
,
Wang
C. Z.
,
Chan
C. T.
and
Ho
K. M.
(
1991
)
Molecular-dynamic simulation of thermal conductivity in amorphous silicon
,
Phys. Rev. B
,
43
:
6573
6573
35.
Yu
C-J
,
Richter
AG
,
Datta
A
,
Durbin
MK
,
Dutta
P
(
2000
)
Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study
.
Phys. B
283
:
27
31
36.
Bertolini
D.
,
Tani
A.
(
1997
)
Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results
,
Phys. Rev. E.
,
56
:
4135
4135
This content is only available via PDF.
You do not currently have access to this content.