Most parameter estimation is based upon the assumption of normally distributed errors using least squares and the confidence intervals are computed from the sensitivities and the statistics of the residuals. For nonlinear problems, the assumption of a normal distribution of the parameters may not be valid. Determining the probability density distribution can be difficult, particularly when there is more than one parameter to be estimated or there is uncertainty about other parameters. An alternative approach is Bayesian inference, but the numerical computations can be expensive. Markov Chain Monte Carlo (MCMC) may alleviate some of the expense. The paper describes the application of MCMC to estimate the mass flow rate, the heat transfer coefficient, and the specific heat of a packed bed regenerator.

1.
Sivia, D. S., 1996, Data Analysis: A Bayesian Tutorial, Oxford Univ. Press, Oxford, UK
2.
Bolstad, W. M., 2004, Introduction To Bayesian Statistics, Wiley-Interscience, N.Y., NY
3.
O’Hagan, A. and Forster, J., 2004, Bayesian Inference, Kendall’s Advanced Theory of Statistics, Vol. 2b, Oxford Univ. Press, Oxford, UK
4.
Emery, A. F., Valenti, E. and Bardot, D., 2005, “Parameter Estimation for Noisy Data and Nuisance Variables,” Proc. 5th Intl. Conf. on Inverse Problems in Engineering, Cambridge, UK.
5.
Papoulis, A. and Pillai, S. U., 2002, Probability, Random Variables, And Stochastic Processes, McGraw-Hill, N.Y., NY
6.
Seber, G. A. F. and Wild, C. J., 1989, Nonlinear Regression, J. Wiley and Sons, N. Y., NY
7.
Pawatin, Y., In All Likelihood: Statistical Modelling and Inference Using Likelihood. 2001, Oxford Univ. Press, Oxford, UK
8.
Beck. J. V. and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, J. Wiley and Sons, N.Y., NY
9.
Engl, H. W., Hanke, M., and Neubauer, A., 1996, Regularization of Inverse Problems, Kluwer Academic Publ., Boston, MA
10.
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B., 2004, Bayesian Data Analysis Chapman & Hall/CRC Press, Boca Raton, Fl
11.
Wang
J.
and
Zabaras
N.
,
2005
, “
Using Bayesian Statistics in the Estimation of Heat Source in Radiation
,”
Intl. Journal of Heat and Mass Transfer
, Vol.
48
, pp.
15
29
12.
Liu, J. S., 2001, Monte Carlo Strategies in Scientific Computing, Springer, N.Y., NY
13.
Burns, G. W. and Scroger, M. G., 1989, “The Calibration of Thermocouples And Thermocouple Materials,” NIST, SP-250-35, Washington DC
14.
Coutier
J. P.
and
Farber
E. A.
,
1982
, “
Two Applications of a Numerical Approach of Heat Transfer Process Within Rock Beds
,”
Solar Energy
, Vol.
29
, n
6
, pp.
451
462
15.
Riaz
M.
,
1978
, “
Transient Analysis of Packed Bed Thermal Storage Systems
,”
Solar Energy
, Vol.
21
, pp.
123
128
16.
Incropera, F. P. and DeWitt, D. P., 2001, Introduction To Heat Transfer, J. Wiley and Sons, N.Y., NY
17.
Mills, A. F., 1999, Basic Heat and Mass Transfer, Prentice Hall, N.Y., NY
18.
Doeblin, E. O., 2004, Measurement Systems: Application and Design, McGraw Hill, N.Y., NY
19.
Emery
A. F.
,
Blackwell
B. F.
, and
Dowding
K. J.
,
2002
, “
The Relationship Between Information, Sampling Rates, And Parameter Estimation Models
,”
ASME Journal of Heat Transfer
, Vol.
124
, No.
6
, pp.
1192
9
20.
Shiavi, R., 1999, Introduction To Applied Statistical Signal Analysis, Academic Press, N.Y., NY
This content is only available via PDF.
You do not currently have access to this content.