Enhanced laser cooling performance of rare-earth ion doped nanocrystalline powders is predicted, using Yb3+:Y2O3 as the model material. This is achieved by enhancing the anti-Stokes off-resonance absorption, which is proportional to the three factors considered in this paper: dopant concentration, pumping field energy, and anti-Stokes transition rate. The concept of the optimum dopant concentration for cooling is proposed based on the fact that higher concentration increases absorption while decreases quantum efficiency. Using the concentration quenching theory of energy transfer, the optimum concentration, which gives the maximum cooling power, is found to be larger than the currently used value, suggesting noticeable enhancement effects for laser cooling. The pumping field energy is enhanced in random nanopowders compared with bulk crystals under the same irradiation, due to the multiple scattering of photons. Photons are thus localized in the medium and do not propagate through, increasing the photon absorption of the pumping beam. This also contributes significantly to laser cooling enhancement. Using molecular dynamics simulations, the phonon density of states (DOS) of the nanopowder is calculated, and found to have extended, small tails at low and high frequencies. The second-order electronic transition rate for the anti-Stokes luminescence is calculated using the Fermi golden rule, which includes the influence of this phonon DOS, and is shown to have enhancement effects on the laser cooling efficiency using nanopowders. Finally, it is concluded that these three enhancement mechanisms are exactly equivalent to increasing the number of the three participating carriers (electron, photon, and phonon) in the interacting volume.

1.
Pringsheim
P.
,
1929
. “
Zwei bemerkungen uber den unterschied von lumineszenz und temperaturstrahlung
.”
Z. Phys.
,
57
, pp.
739
746
.
2.
Vavilov
S.
,
1945
. “
Some remarks on the Stokes law
.”
J. Phys. (Moscow)
,
9
, pp.
68
73
.
3.
Vavilov
S.
,
1946
. “
Photoluminescence and thermodynamics
.”
J. Phys. (Moscow)
,
10
, pp.
499
501
.
4.
Landau
L.
,
1962
. “
On the thermodynamics of photoluminescence
.”
J. Phys. (Moscow)
,
10
, pp.
503
506
.
5.
Kushida
T.
, and
Geusic
J.
,
1968
. “
Optical refrigeration in nd-doped yttrium aluminium garnet
.”
Phys. Rev. Lett.
,
21
, pp.
1172
1175
.
6.
Djeu
N.
, and
Whitney
W.
,
1981
. “
Laser cooling by spontaneous anti-stokes scattering
.”
Phys. Rev. Lett.
,
46
, pp.
236
239
.
7.
Epstein
R.
,
Buckwald
M.
,
Edwards
B.
,
Gosnell
T.
, and
Mungan
C.
,
1995
. “
Observation of laser-induced fluorescent cooling of a solid
.”
Nature
,
377
, pp.
500
503
.
8.
Mungan
C.
,
Buchwald
M.
,
Edwards
B.
,
Epstein
R.
, and
Gosnell
T.
,
1997
. “
Internal laser cooling of Yb3+-doped glass measured between 100 and 300 k
.”
Appl. Phys. Lett.
,
71
, pp.
1458
1460
.
9.
Luo
X.
,
Eisaman
M.
, and
Gosnell
T.
,
1998
. “
Laser cooling of a solid by 21 k staring from room temperature
.”
Opt. Lett.
,
23
, pp.
639
641
.
10.
Edwards
B.
,
Anderson
J.
,
Epstein
R.
,
Mills
G.
, and
Mord
A.
,
1999
. “
Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration
.”
J. Appl. Phys.
,
86
, pp.
6489
6493
.
11.
Gosnell
T.
,
1999
. “
Laser cooling of a solid by 65 K starting from room temperature
.”
Opt. Lett.
,
24
, pp.
1041
1043
.
12.
Fernandez
J.
,
Mendioroz
A.
,
Garcia
A.
,
Balda
R.
, and
Adam
J.
,
2000
. “
Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses
.”
Phys. Rev. B
,
62
, pp.
3213
3217
.
13.
Epstein
R.
,
Brown
J.
,
Edwards
B.
, and
Gibbs
A.
,
2001
. “
Measurements of optical refrigeration in ytterbium-doped crystals
.”
J. Appl. Phys.
,
90
, pp.
4815
4819
.
14.
Rayner
A.
,
Friese
M.
,
Truscott
A.
,
Heckenberg
N.
, and
Rubinsztein-Dunlop
H.
,
2001
. “
Laser cooling of a solid from ambient temperature
.”
Journal of Modern Optics
,
48
, pp.
103
114
.
15.
Hoyt
C.
,
Hasselbeck
M.
,
Sheik-Bahae
M.
,
Epstein
R.
,
Greenfield
S.
,
Thiede
J.
,
Distel
J.
, and
Valencia
J.
,
2003
. “
Advances in laser cooling of thulium-doped glass
.”
J. Opt. Soc. Am. B
,
20
, pp.
1066
1074
.
16.
Heeg
B.
,
Stone
M.
,
Khizhnyak
A.
,
Rumbles
G.
,
Mills
G.
, and
Debarber
P.
,
2004
. “
Experimental demonstration of intracavity solid-state laser cooling of Yb3+: ZrF4-BaF2-LaF3-AlF3-NaF glass
.”
Phys. Rev. A
,
70
, pp.
1
4
.
17.
Thiede
J.
,
Distel
J.
,
Greenfield
S.
, and
Epstein
R.
,
2005
. “
Cooling to 208 K by optical refrigeration
.”
Appl. Phys. Lett.
,
86
, p.
154107
154107
.
18.
Hehlen
M.
,
Gudel
H.
,
Shu
Q.
, and
Rand
S.
,
1996
. “
Cooperative optical bistability in the dimer system Cs3Y2Br9:10% Yb3+
.”
J. Chem. Phys.
,
104
, pp.
1232
1244
.
19.
Griffiths, D., 1995. Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River, New Jersey.
20.
Hayt, W., and Buck, J., 2001. Engineering Electromagnetics. Mcgraw-Hill, Boston.
21.
Zych
E.
,
2001
. “
On the reasons for low luminescence efficiency in combustion-made Lu2O3: Tb
.”
Opt. Mat.
,
16
, pp.
445
452
.
22.
Auzel
F.
,
2002
. “
A fundamental self-generated quenching center for lanthanide-doped high-purity solids
.”
Journal of Luminescence
,
100
, pp.
125
130
.
23.
Boulon
G.
,
Guyot
Y.
,
Ito
M.
,
Bensalah
A.
,
Goutaudier
C.
,
Panczer
G.
, and
Gacon
J.
,
2004
. “
From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals
.”
Molecular Physics
,
102
, pp.
1119
1132
.
24.
Powell, R., 1998. Physics of Solid-State Laser Materials. Spinger-Verlag, New York.
25.
Lei
G.
,
Anderson
J.
,
Buchwald
M.
,
Edwards
B.
,
Epstein
R.
,
Murtagh
M.
, and
Sigel
G.
,
1998
. “
Spectroscopic evaluation of yb3+-doped glasses for optical refrigeration
.”
IEEE J. Quantum Electron.
,
34
, pp.
1839
1845
.
26.
Rand, S., 2003. “Bright storage of light.” Optics & Photonics News, May, pp. 32–37.
27.
Wiersma
D.
,
Bartolini
P.
,
Lagendijk
A.
, and
Righini
R.
,
1997
. “
Localization of light in a disordered medium
.”
Nature
,
390
, pp.
671
673
.
28.
Anderson
P.
,
1958
. “
Absence of diffusion in certain random lattices
.”
Phys. Rev.
,
109
, pp.
1492
1505
.
29.
Ruan
X.
, and
Kaviany
M.
,
2005
. “
Photon localization and electromagnetic field enhancement in laser irradiated, random porous media
.”
Microscale Thermophysical Engineering
,
9
, pp.
63
84
.
30.
Zhang
Z.
, and
Flik
M.
,
1993
. “
Predicted absorption of YBa2Cu3O7/YSZ/Si multilayer structures for infrared detectors
.”
IEEE Transactions on Applied Superconductivity
,
3
, pp.
1604
1607
.
31.
Ruan
X.
, and
Kaviany
M.
,
2005
. “
Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders
.”
J. Appl. Phys.
,
97
, pp.
104331
-
1
.
32.
Kittel, C., 1996. Introduction to Solid State Physics. John Wiley, New York.
33.
Yang
H.
,
Hong
K.
,
Feofilov
S.
,
Tissue
B.
,
Meltzer
R.
, and
Dennis
W.
,
1999
. “
Electron-phonon interaction in rare earth doped nanocrystals
.”
J. Luminescence
,
83–84
, pp.
139
145
.
34.
Loong
C.
,
Vashishta
P.
,
Kalia
R.
,
Jin
W.
,
Degani
M.
,
Hinks
D.
,
Price
D.
,
Jorgensen
J.
,
Dabrowski
B.
,
Mitchell
A.
,
Richards
D.
, and
Zheng
Y.
,
1992
. “
Phonon density of states and oxygen-isotope effect in Ba1−xKxBiO3
.”
Phys. Rev. B
,
45
, pp.
8052
8064
.
35.
Chou
F.
,
Lukes
J.
,
Liang
X.
,
Takahashi
K.
, and
Tien
C.
,
1999
. “
Molecular dynamics in microscale thermophysical engineering
.”
Ann. Rev. Heat Transfer
,
10
, pp.
141
176
.
36.
Paton
M.
, and
Maslen
E.
,
1965
. “
A refinedment of crystal structure of yttria
.”
Acta Cryst.
,
19
, pp.
307
310
.
37.
O’Connor
B.
, and
Valentine
T.
,
1969
. “
A neutron diffraction study of crystal structure of c-form of yttrium sesquioxide
.”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
,
B25
, p.
2140
2140
.
38.
Konard
A.
,
Herr
U.
,
Tidecks
R.
,
Kummer
F.
, and
Samwer
K.
,
2001
. “
Luminescence of bulk and nanocrystalline cubic yttria
.”
J. Appl. Phys.
,
90
, pp.
3516
3523
.
39.
Buckingham
R.
,
1938
.
Proc. R. Soc. London, Ser. A
,
168
, p.
234
234
.
40.
Lewis
G.
, and
Catlow
C.
,
1985
. “
Potential models for ionic oxides
.”
J. Phys. C
,
18
, pp.
1149
1161
.
41.
Brinkman
H.
,
Briels
W.
, and
Verweij
H.
,
1995
. “
Molecular dynamics simulations of yttria-stabilized zirconia
.”
Chem. Phys. Lett.
,
247
, pp.
386
390
.
42.
Kilo, M., Jackson, R. A., and Borchardt, G., 2003. “Computer modelling of ion migration in zirconia.” Philosophical Magzine, 83.
43.
DiBartolo, B., 1968. Optical Interaction in Solids. John Wiley, New York.
44.
Montoya
E.
,
Agullo-Rueda
F.
,
Manotas
S.
,
Sole
J. G.
, and
Bausa
L.
,
2001
. “
Electron-phonon coupling in Yb3+: LiNbO3 laser crystal
.”
J. Luminescence
,
94–95
, pp.
701
705
.
45.
Mungan
C.
,
2005
. “
Radiation thermodynamics with applications to lasing and fluorescent cooling
.”
Am. J. Phys.
,
73
, pp.
1458
1460
.
This content is only available via PDF.
You do not currently have access to this content.