Flows in porous media may be modeled using either a macroscopic approach, where volume-averaged semi-empirical equations are used to describe flow characteristics, or a microscopic approach, where small-scale flow details are simulated by considering the specific geometry of the porous medium. A direct simulation of the transport in an open-cell metal foam is carried out in the present study using a periodic unit cell. The foam geometry is created by assuming the pore to be spherical. The spheres are located at the vertices and at the center of the unit cell. The periodic foam geometry is obtained by subtracting the unit cell cube from the spheres. Fluid and heat flow are computed in the periodic unit cell. The objective of the present study is to obtain the effective thermal conductivity, pressure drop and local heat transfer coefficient from a consistent direct simulation of the open-cell foam structure. The computed values compare well with the existing experimental measurements and semi-empirical models. The results and the merits of the present approach are discussed.

1.
Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., and Wadley, H. J. G., 2000, Metal Foams: A Design Guide, Butterworth — Heinemann, Boston.
2.
Boomsma
K.
,
Poulikakos
D.
, and
Zwick
F.
,
2003
, “
Metal foams as compact high performance heat exchangers
,”
Mechanics of Materials
,
35
, pp.
1161
1176
.
3.
Lu
T. J.
,
Stone
H. A.
, and
Ashby
M. F.
,
1998
, “
Heat transfer in open-cell metal foams
,”
Acta Materialia
,
46
, pp.
3619
3635
.
4.
Ozmat
B.
,
Leyda
B.
and
Benson
B.
,
2004
, “
Thermal applications of open-cell metal foams
,”
Materials and Manufacturing Processes
,
19
, pp.
839
862
.
5.
Boomsma
K.
, and
Poulikakos
D.
,
2001
, “
On the effective thermal conductivity of a three-dimensionally structured fluidsaturated metal foam
,”
International Journal of Heat and Mass Transfer
,
44
, pp.
827
836
.
6.
Calmidi
V. V.
, and
Mahajan
R. L.
,
1999
, “
The effective thermal conductivity of high porosity fibrous metal foams
,”
ASME Journal of Heat Transfer
,
121
, pp.
466
471
.
7.
Fourie
J. G.
and
Du Plessis
J. P.
,
2002
, “
Pressure drop modeling in cellular metallic foams
,”
Chemical Engineering Science
,
57
, pp.
2781
2789
8.
Boomsma
K.
,
Poulikakos
D.
, and
Ventikos
Y.
,
2003
, “
Simulations of flow through open cell foams using an idealized periodic cell structure
,”
International Journal of Heat and Fluid Flow
,
24
, pp.
825
834
.
9.
Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2005, “A two-temperature model for solid-liquid phase change in metal foams,” ASME Journal of Heat Transfer (in press).
10.
DuPlessis
P.
,
Montillet
A.
,
Comiti
J.
, and
Legrand
J.
,
1994
, “
Pressure drop prediction for flow through high porosity metallic foams
,”
Chemical Engineering Science
,
49
, pp.
3545
3553
.
11.
Fourie
J. G.
and
Du Plessis
J. P.
,
2002
, “
Pressure drop modeling in cellular metallic foams
,”
Chemical Engineering Science
,
57
, pp.
2781
2789
.
12.
Krishnan
S.
,
Murthy
J. Y.
, and
Garimella
S. V.
,
2004
, “
A two-temperature model for the analysis of passive thermal control systems
,”
ASME Journal of Heat Transfer
,
126
, pp.
628
637
.
13.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
14.
Amiri
A.
, and
Vafai
K.
,
1994
, “
Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media
,”
International Journal of Heat and Mass Transfer
,
37
, pp.
939
954
.
15.
Bhattacharya
A.
,
Calmidi
A. A.
, and
Mahajan
R. L.
,
2002
, “
Thermophysical properties of high porosity metal foams
,”
International Journal of Heat and Mass Transfer
,
45
, pp.
1017
1031
.
16.
Thomson
W.
,
1887
, “
On the division of space with minimum partitional area
,”
Philosophical Magazine
,
5
, pp.
645
654
.
17.
Weaire
D.
,
2001
, “
A philomorph looks at foam
,”
Proceedings of the American Philosophical Society
,
145
, pp.
564
574
.
18.
Phelan
R.
,
Weaire
D.
, and
Brakke
K.
,
1995
, “
Computation of equilibrium foam structures using the Surface Evolver
,”
Experimental Mathematics
,
4
, pp.
181
192
.
19.
Dharmasena
K. P.
, and
Wadley
H. N. G.
,
2002
, “
Electrical conductivity of open-cell metal foams
,”
Journal of Materials Research
,
17
, pp.
625
631
.
20.
Fluent Inc., User’s Guide for FLUENT 6.0, 2002.
21.
Patankar
S. V.
,
Liu
C. H.
, and
Sparrow
E. M.
,
1977
, “
Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area
,”
Journal of Heat Transfer
,
99
, pp.
180
186
.
22.
Murthy
J. Y.
, and
Mathur
S.
,
1997
, “
Periodic flow and heat transfer using unstructured meshes
,”
International Journal of Numerical Methods in Fluids
,
25
, pp.
659
677
.
23.
Kumar, S., and Murthy, J. Y., 2005, “A numerical technique for computing effective thermal conductivity of fluid-particle mixtures,” Numerical Heat Transfer: Part A.
24.
Fluent Inc., User’s Guide for FLUENT 6.0, 2002.
25.
Lemlich
R.
,
1978
, “
A theory for the limiting conductivity of polyhedral foam at low density
,”
Journal of Colloid and Interface Science
,
64
, pp.
107
110
.
26.
Paek
J. W.
,
Kang
B. H.
,
Kim
S. Y.
, and
Hyun
J. M.
,
2000
, “
Effective thermal conductivity and permeability of aluminum foam materials
,”
International Journal of Thermophysics
,
21
, pp.
453
464
.
27.
Koch
D. L.
and
Brady
J. F.
,
1985
, “
Dispersion in fixed beds
,”
Journal of Fluid Mechanics
,
154
, pp.
399
427
.
28.
Koch
D. L.
and
Brady
J. F.
,
1985
, “
The effective diffusivity of fibrous media
,”
AIChE Journal
,
32
, pp.
575
591
.
29.
Vafai
K.
, and
Tien
C. L.
,
1982
, “
Boundary and inertia effects on convective mass transfer in porous media
,”
International Journal of Heat and Mass Transfer
,
25
, pp.
1183
1190
.
30.
Calmidi
V. V.
, and
Mahajan
R. L.
,
2000
, “
Forced convection in high porosity metal foams
,”
Journal of Heat Transfer
,
122
, pp.
557
565
.
This content is only available via PDF.
You do not currently have access to this content.