Ultrafast laser radiation heat transfer in biological tissues is governed by time-dependent equation of radiative transfer and modeled using the transient discrete ordinates method. The divergence of radiative heat flux is then obtained and used for predicting the local temperature response due to radiation energy absorption within the ultrashort time period. To this end, the lumped method is employed and heat diffusion is negligible. Both single pulse and pulse train irradiations are considered. For the single pulse irradiation, the transient radiation field is obtained and the local temperature keeps rising until a time of about 20 times of the short pulse width; and then a stable local temperature profile is reached and maintained until the start of heat conduction. For the pulse train case (104 ultrashort pulses until 1 ms), the local temperature response is an accumulation of continuous single pulses because the thermal relaxation time of biological tissues was reported in the range of 1-100 sec and is much longer than the pulse train duration (1 ms). After a stable local temperature field is achieved, the hyperbolic heat conduction model is adopted to describe the heat conduction. MacCormark’s scheme is utilized for solving the thermal wave equations. Thermal wave behavior is observed during the heat transfer process. It is found that the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. After several thermal relaxation times the thermal wave behavior is substantially weakened and the predictions between the hyperbolic and diffusion models match.

1.
Patterson
M. S.
,
Chance
B.
and
Wilson
B. C.
, “
Timeresolved measurement of tissue optical properties
,”
Appl. Opt.
,
28
,
2331
2336
(
1989
).
2.
Alfano
R. R.
,
Demos
S. G.
and
Gayen
S. K.
, “
Advances in optical imaging of biomedical media
,”
Ann. New York Acad. Sci.
,
820
,
248
270
(
1997
).
3.
Loesel
F. H
,
Fisher
F. P.
,
Suhan
H.
, and
Bille
J. F.
, “
Nonthermal ablation of neural tissue with fetmtosecond laser pulses
,”
Appl. Phys. B.
,
66
,
121
128
(
1998
).
4.
Bass
L. S.
and
Treat
M. R.
, “
Laser tissue welding: a comprehensive review of current and future applications
,”
Lasers Surg. Med.
,
17
,
315
349
(
1995
).
5.
Obana
A.
and
Gohto
Y.
, “
Scanning laser system for photodynamic therapy of choroidal neovascularization
,”
Lasers Surgery Med.
,
30
,
370
375
(
2002
).
6.
Quan
H.
and
Guo
Z.
, “
Fast 3-D optical imaging with transient fluorescence signals
,”
Optics Express
,
12
,
449
457
(
2004
).
7.
Guo
Z.
and
Kumar
S.
, “
Radiation element method for transient hyperbolic radiative transfer in plane-parallel inhomogeneous media
,”
Numerical Heat Transfer Part B: Fundamentals
,
39
,
371
387
(
2001
).
8.
Guo
Z.
,
Aber
J.
,
Garetz
B.
and
Kumar
S.
, “
Monte Carlo simulation and experiments of pulsed radiative transfer
,”
J. Quantitative Spectroscopy & Radiative Transfer
,
73
,
159
168
(
2002
).
9.
Guo
Z.
and
Kim
K. H.
, “
Ultrafast-laser-radiation transfer in heterogeneous tissues with the discrete-ordinates method
,”
Appl. Opt.
,
42
,
2897
2905
(
2003
).
10.
Kumar
S.
,
Mitra
K.
and
Yamada
Y.
, “
Hyperbolic dampedwave models for transient light-pulse propagation in scattering media
,”
Appl. Opt.
,
35
,
3372
3378
(
1996
).
11.
Mitra
K.
and
Kumar
S.
, “
Development and comparison of models for light pulse transport through scattering absorbing media
,”
Appl. Opt.
,
38
,
88
196
(
1999
).
12.
Guo
Z.
and
Kumar
S.
, “
Discrete ordinates solution of short pulse laser transport in two-dimensional turbid media
,”
Appl. Opt.
,
40
,
3156
3163
(
2001
).
13.
Guo
Z.
and
Kumar
S.
, “
Three-dimensional discrete ordinates method in transient radiative transfer
,”
J. Thermophy. Heat Transfer
,
16
,
289
296
(
2002
).
14.
Kim
K. H.
and
Guo
Z.
, “
Ultrafast radiation heat transfer in laser tissue welding and soldering
,”
Numerical Heat Transfer Part A: Applications
,
46
,
23
46
(
2004
).
15.
Leola
G. M.
,
Anderson
R. R.
,
Decocted
S.
, “
Preliminary evaluation of collagen as a component in the thermally induced weld
,”
Proc. SPIE
,
1422
,
116
122
(
1991
).
16.
Deckelbaum
L. L.
,
Isner
J. M.
,
Donaldson
R. F.
,
Laliberte
S. M.
,
Clarke
R. H.
,
Salem
D. N.
, “
Use of pulsed energy delivery to minimize tissue injury resulting from CO2 laser irradiation of cardiovascular tissues
,”
J. Am. Coll. Cardiol.
,
7
,
898
900
(
1986
).
17.
Anderson
R. R.
, and
Parrish
J. A.
., “
Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation
,”
Science
,
220
,
525
527
(
1983
).
18.
Welch
A. J.
,
Wissler
E. H.
and
Priebe
L. A.
, “
Significance of blood flow in calculation of temperature in laser irradiated tissue
,”
IEEE Trans. Biomed. Eng.
,
BME-27
,
164
166
(
1980
).
19.
Joseph
D. D.
and
Preziosi
L.
, “
Heat waves
,”
Rev. Modern Phys.
,
61
,
118
1128
(
1989
).
20.
Kaminski
W.
, “
Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structures
,”
J. Heat Transfer
,
112
,
555
560
(
1990
).
21.
Ozisik
M. N.
and
Tzou
D. Y.
, “
On the wave theory in heat conduction
,”
J. Heat Transfer
,
116
,
526
535
(
1994
).
22.
Mitra
K.
,
Kumar
S.
,
Vedavarz
A.
, and
Moallemi
M.
, “
Experimental evidence of hyperbolic heat conduction in processed meat
,”
J. Heat Transfer
,
117
,
568
573
(
1995
)
23.
Tzou
D. Y.
, “
Experimental support for the lagging behavior in heat propagation
,”
J. Thermophys. Heat Transfer
,
9
,
686
693
(
1995
).
24.
Lavine
A. S.
and
Bai
C.
, “
Hyperbolic heat conduction in thin domains
,”
Thermal Sci. & Eng.
,
2
,
185
190
(
1994
).
25.
Vedavarz
A.
,
Kumar
S.
and
Moallemi
M. K.
, “
Significance of non-Fourier heat waves in conduction
,”
J. Heat Transfer
,
116
,
221
224
(
1994
).
26.
Glass
D. E.
,
Ozisik
M. N.
,
McRae
D. S.
,
Vick
B.
, “
On the numerical solution of hyperbolic heat conduction
,”
Numerical Heat Transfer
,
8
,
497
504
(
1985
).
27.
Saidane
A.
and
Pulko
S. H.
, “
High-power short pulse laser heating of low dimensional structures: a hyperbolic heat conduction study using TLM
,”
Microelectronic Engineering
,
51–52
,
469
478
(
2000
).
28.
Liu
L. H.
and
Tan
H. P.
, “
Non-Fourier effects on transient coupled radiative-conductive heat transfer in onedimensional semitransparent medium subjected to a periodic irradiation
,”
J. Quantitative Spectroscopy & Rad. Transfer
,
71
,
11
24
(
2001
).
29.
Fan
Q. M
and
Lu
W. Q.
, “
A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium
,”
Int. J. Heat Mass Transf.
,
45
,
2815
2821
(
2002
).
30.
Hoashi
E.
,
Yokomine
T.
,
Shimizu
A.
and
Kunugi
T.
, “
Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser
,”
Int. J. Heat Mass Transfer
,
46
,
4083
4095
(
2003
).
31.
Choi
B.
and
Welch
A. J.
, “
Analysis of thermal relaxation during laser irradiation of tissue
,”
Lasers in Surg. Med.
,
29
,
351
359
(
2001
).
32.
Telenkov
S. A.
,
Youn
J. I.
,
Goodman
D. M.
,
Welch
A. J.
and
Milner
T. E.
, “
Non-contact measurement of thermal diffusivity in tissue
,”
Phys. Med. Biol.
,
46
,
551
558
(
2001
).
33.
Diaz
S. H.
,
Aguilar
G.
,
Basu
R.
,
Lavernia
E.
, and
Wong
B. J. F.
, “
Modeling the thermal response of porcine cartilage to laser irradiation
,”
Proc. SPIE
,
4617
,
47
56
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.