Experiments were performed to examine the influence of vertical oscillations of inertia field on convection instability and flows patterns in a horizontal fluid layer heated from one wide side and cooled from another one. Two cases are considered: when the fluid layer was heated from below and from above. The temperature sensors were used for measurement of heat transport across the layer. Visualization of flow patterns was provided by stroboscopic lighting and powdered aluminum. The parametric resonance excitation of convection under heating from above, as well as dynamical stabilization of statically unstable states, long-wave mode and parametric resonance under heating from below realized. The earlier unknown instability regions and convection structures are discovered. The results indicate that with the use of an oscillating inertia field it is possible to control the convection stability, intensity of the heat transfer and the structure of convection motions.

1.
Gershuni
G. Z.
, and
Zhukhovitsky
E. M.
,
1963
, “
On parametric excitation of convection instability
,”
Applied Mathematics and Mechanics
,
27
, no.
5
, pp.
779
783
(in Russian).
2.
Zenkovskaya, S. M., and Simonenko, I. B., 1966, “On high-frequency vibrations influence upon the onset of convection,” Fluid Dynamics, no. 5, pp. 51–55 (in Russian).
3.
Gresho
P. M.
, and
Sani
R. L.
,
1970
, “
The effect of gravity modulation on the stability of a heated fluid layer
,”
Journal of Fluid Mechanics
,
40
, no.
4
, pp.
783
806
.
4.
Biringen
S.
,
Peltier
L. J.
,
1990
, “
Numerical simulation of 3-D Benard convection with gravitational modulation
,”
Physics of Fluids A
,
2
, pp.
754
764
.
5.
Saunders
B. V.
,
Murray
B. T.
,
McFadden
G. B.
,
Coriell
S. R.
, and
Wheeler
,
1992
, “
The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
,”
Physics of Fluids A
,
4
, no.
6
, pp.
1176
1189
.
6.
Clever
R.
,
Schubert
G.
, and
Busse
F. H.
,
1993
, “
Three- dimensional oscillatory convection in a gravitationally modulated fluid layer
,”
Physics of Fluids A
,
5
, no.
10
, pp.
2430
2437
.
7.
Farooq
A.
, and
Homsy
G. M.
,
1996
, “
Linear and nonlinear dynamics of a differentially heated slot under gravity modulation
,”
Journal of Fluid Mechanics
,
313
, pp.
1
38
.
8.
Farooq
A.
, and
Homsy
G. M.
,
1994
, “
Streaming flows due to g-jitter-induced natural convection
,”
Journal of Fluid Mechanics
,
271
, pp.
351
378
.
9.
Wang, F. C., Ramachandran, N., and Baugher, C. R., 1996, “Vibration convection of fluids in a crystal growth cavity,” AIAA-paper 96-0597, 34th Aerospace Sciences Meeting & Exhibit, Reno, NV.
10.
Fedoseev, A. I., and Alexander, J., 1999, “Thermovibrational flow in Bridgman melt growth configuration,” AIAA-paper 99-0839, 37th Aerospace Sciences Meeting & Exhibit, Reno, NV.
11.
Semenov, V. A., “Parametric instability of nonuniformly heated dielectric liquid layer in the alternating electric field,” 1993, Fluid Dynamics, no. 5, pp. 184–186 (in Russian).
12.
Smorodin
B. L.
, and
Velarde
M., G.
,
2001
, “
On the parametric excitation of electrothermal instability in a dielectric liquid layer using an alternating electric field
,”
Journal of Electrostatics
,
50
, no.
3
, pp.
205
226
.
13.
Smorodin
B. L.
, and
Velarde
M. G.
,
2000
, “
Electrothermoconvective instability of an ohmic liquid layer in an unsteady electric field
,”
Journal of Electrostatics
,
48
, no.
3–4
, pp.
261
277
.
14.
Smorodin
B. L.
,
Gershuni
G. Z.
, and
Velarde
M. G.
,
1999
, “
On the parametric excitation of thermoelectric instability in a liquid layer open to air
,”
International Journal of Heat and Mass Transfer
,
42
, pp.
3159
3168
.
15.
Shliomis
M. I.
,
Smorodin
B. L.
, and
Kamiyama
S.
,
2003
, “
The onset of thermomagnetic convection in stratified ferrofluids
,”
Philosophical Magazine
,
83
, no.
17–18
, pp.
2139
2153
.
16.
Baytas
A. C.
, “
Bouyancy-driven flow in an enclosure containing time periodic internal sources
,”
1996
,
International Journal of Heat and Mass Transfer
,
31
, pp.
113
119
.
17.
Gershuni
G. Z.
,
Nepomnyashchy
A. A.
,
Smorodin
B. L.
, and
Velarde
M. G.
,
1994
, “
On parametric excitation of thermo-capillary and thermogravitational convective instability
,”
Microgravity Quarterly
,
4
, no.
4
, pp.
215
220
.
18.
Finucane
R. G.
, and
Kelly
R. I.
,
1976
, “
Onset of instability in a fluid layer heated sinusoidally from below
,”
International Journal of Heat and Mass Transfer
,
19
, pp.
71
85
.
19.
Gollub
J. P.
, and
Benson
S. V.
,
1978
, “
Chaotic response to periodic perturbation of a convecting fluid
,”
Physical Revue Letters
,
41
, no.
14
, pp.
948
951
.
20.
Ahlers
J
,
Hohenberg
P. C.
, and
Lucke
M
,
1985
, “
Thermal convection under external modulation of the driving force. II. Experiment
,”
Physical Revue A
,
32
, no.
6
, pp.
3519
3534
.
21.
Meyer
C. W.
,
Channel
D. S.
, and
Ahlers
G.
,
1992
, “
Hexagonal and roll flow patterns in temporally modulated Rayleigh-Benard convection
,”
Physical Revue A
,
45
, pp.
8583
8604
.
22.
Zavarykin
M. P.
,
Zorin
S. V.
, and
Putin
G. F.
,
1985
, “
Experimental investigation of vibration convection
,”
Proceedings of USSR Academy of Sciences
,
299
, no.
2
, pp.
309
312
(in Russian).
23.
Zavarykin
M. P.
,
Zorin
S. V.
, and
Putin
G. F.
,
1988
, “
On thermo-convection instability in vibration field
,”
Proceedings of USSR Academy of Sciences
,
281
, no.
4
, pp.
815
816
(in Russian).
24.
Zenkovskaya, S. M., 1978, “The influence of vibration on the onset of convection,” Preprint VINITI, USSR, 2437-78, 30 p. (in Russian).
25.
Gershuni
G. Z.
, and
Zhukhovitsky
E. M.
,
1979
, “
On free thermal convection in vibration field under weightlessness conditions
,”
Proceedings of USSR Academy of Sciences
,
249
, no.
3
, pp.
580
584
(in Russian).
26.
Zavarykin, M. P., Zyuzgin, A. V., and Putin, G. F., 1996, “Experimental investigation of parametrical convection in the variable inertia field,” Proceedings of International Symposium on Stability of Homogeneous and Inhomogeneous Fluid Flows, Novosibirsk, Russia, pp. 40–41 (in Russian).
27.
Zavarykin, M. P., Zyuzgin, A. V., and Putin, G. F., 2002, “Experimental investigation of parametrical thermal convection,” Vibrational Effects in Hydrodynamics: Book of papers, Perm State University, Perm, Russia, 2, pp. 79–96 (in Russian).
28.
Rogers
J. L.
,
Schatz
M. F.
,
Bougie
G. L.
, and
Swift
J. B.
,
2000
, “
Rayleigh-Benard convection in a vertically oscillated fluid layer
,”
Physical Revue Letters
,
84
, no.
1
, pp.
87
90
.
29.
Rogers
J. L.
,
Schatz
M. F.
,
Brausch
O.
, and
Pesch
W.
,
2000
, “
Superlattice patterns in vertically oscillated Rayleigh-Benard convection
,”
Physical Revue Letters
,
85
, no.
20
, pp.
4281
4284
.
30.
Rogers
J. L.
,
Pesch
W.
, and
Schatz
M. F.
2003
, “
Pattern formation in vertically oscillated convection
,”
Nonlinearity
,
16
, pp.
1
10
.
31.
Schmidt
R. J.
, and
Milverton
S. W
,
1935
, “
On the instability of a fluid when heated from below
,”
Proceedings of Royal Society A
,
152
, pp.
586
594
.
32.
Daniels
K. E.
,
Plapp
B. B.
, and
Bodenschatz
E
,
2000
, “
Pattern formation in inclined layer convection
,”
Physical Revue Letters
,
84
, no.
23
, pp.
5320
5323
.
This content is only available via PDF.
You do not currently have access to this content.