The concept of disjoining pressure, developed from thermodynamic and hydrodynamic analysis, has been widely used as a means of modeling the liquid-solid molecular force interactions in an ultra-thin liquid film on a solid surface. In particular, this approach has been extensively used in models of thin film transport in passages in micro evaporators and micro heat pipes. In this investigation, hybrid μPT molecular dynamics (MD) simulations were used to predict the pressure field and film thermophysics for an argon film on a metal surface. The results of the simulations are compared with predictions of the classic thermodynamic disjoining pressure model. The thermodynamic model provides only a prediction of the relation between vapor pressure and film thickness for a specified temperature. The MD simulations provide a detailed prediction of the density and pressure variation in the liquid film, as well as a prediction of the variation of the equilibrium vapor pressure variation with temperature and film thickness. Comparisons indicate that the predicted variations of vapor pressure with thickness for these two models are in close agreement. A modified thermodynamic model is developed which suggests that presence of a wall-affected layer tends to enhance the reduction of the equilibrium vapor pressure. However, the MD simulation results imply that presence of a wall layer has little effect on the vapor pressure. Implications of the MD simulation predictions for thin film transport in micro evaporators and heat pipes are also discussed.

1.
Israelachvilli, J., 1992, Intermolecular & Surface Forces, Second Edition, Academic Press, London.
2.
Kandlikar
S. G.
,
2002
,
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,
Exp. Thermal Fluid Science
, Vol.
26
, pp.
389
407
.
3.
Peterson
G. P.
,
Duncan
A. B.
and
Weichold
M. H.
,
1993
,
Experimental Investigation of Micro Heat Pipes Fabricated in Silicone Wafers
,
ASME J. Heat Transfer
, Vol.
115
, pp.
751
756
.
4.
Gerner
F. M.
,
Badran
B
,
Henderson
H. T.
and
Ramadas
P.
,
1994
,
Silicon-Water Micro Heat Pipes
,
Thermal Sci. Eng.
, Vol.
2
, pp.
90
97
.
5.
Pettersen
J.
,
2004
,
Flow Vaporization of CO2 in Microchannel Tubes
,
Experimental Thermal and Fluid Science
, Vol.
28
, pp.
111
121
.
6.
Park
K.
and
Lee
K-S
,
2003
,
Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel
,
Int. J. Heat Mass Transfer
, Vol.
46
, pp.
4587
4594
.
7.
Wayner
P. C.
,
Kao
Y. K.
and
LaCroix
L. V.
,
1976
,
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
487
492
.
8.
Xu
X.
and
Carey
V. P.
,
1991
,
Film Evaporation from a Micro-Grooved Surface - An Approximate Heat Transfer Model and Its Comparison with Experimental Data
,
AIAA, Journal of Thermophysics and Heat Transfer
, Vol.
4
, pp.
512
520
.
9.
Stephan
P.
and
Busse
C. A.
,
1992
,
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,
Int. J. Heat Mass Transfer
, Vol.
35
, pp.
383
391
.
10.
Swanson
L.
, and
Herdt
G. C.
,
1992
,
Model of the Evaporating Meniscus in a Capillary Tube
,
J. Heat Transfer
, Vol.
114
, pp.
434
441
.
11.
Swanson
L.
, and
Peterson
G. P.
,
1994
,
The Evaporating Extended Meniscus in a V-Shaped Channel
,
AIAA J. Thermophysics and Heat Transfer
, Vol.
8
, pp.
172
181
.
12.
Hallinan
K. P.
,
Chebaro
H. C.
,
Kim
S. J.
and
Change
W. S.
,
1994
,
Evaporation from an Extended Meniscus for Nonisothermal Interfacial Conditions
,
AIAA J. Thermophysics and Heat Transfer
, Vol.
8
, pp.
709
716
.
13.
Khrustalev
D.
and
Faghri
A.
,
1995
,
Heat Transfer During Evaporation on Capillary Grooved Structures of Heat Pipes
,
J. Heat Transfer
, Vol.
117
, pp.
740
747
.
14.
Wemhoff, A.P. and Carey, V.P., 2004, Exploration of Nanoscale Features of Thin Liquid Films on Solid Surfaces Using Molecular Dynamics Simulations, paper IMECE2004-59429, Proceedings of the 2004 ASME International Mechanical Engineering Conference and RD&D Exposition.
15.
Box
G. E. P.
and
Muller
M. E.
,
1958
,
Annual Mathematical Statistics
, Vol.
29
, pp.
610
611
.
16.
Toxvaerd
S.
,
1981
,
The Structure and Thermodynamics of a Solid-Fluid Interface
,
Journal of Chemical Physics
, Vol.
74
, pp.
1998
2005
.
17.
Carey, V.P. 1999, Statistical Thermodynamics and Microscale Thermophysics, Cambridge University Press, Cambridge.
18.
Andersen
H. C.
,
1980
,
Molecular dynamics at constant pressure and/or temperature
,
Journal of Chemical Physics
, Vol.
72
, pp.
2384
2393
.
19.
Frenkel, D. and Smit, B., 2002, Understanding Molecular Simulation; From Algorithms to Applications, 2nd Edition, Academic Press, San Diego.
20.
Carey
V. P.
and
Hawks
N. E.
,
1995
,
Stochastic Modeling of Molecular Transport to an Evaporating Microdroplet in a Superheated Gas
,
ASME J. Heat Transfer
, Vol.
117
, pp.
432
439
.
21.
American Society of Heating, Refrigerating, and Airconditioning Engineers, 2001, ASHRAE Fundamentals Handbook, ASHRAE, Atlanta.
22.
Allen, M. P. and Tildesley, D.J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
23.
Liu
K. S.
,
1974
,
Phase Separation of Lennard-Jones Systems: A Film in Equilibrium with Vapor
,
J. Chem. Phys.
, Vol.
60
, pp.
4226
4230
.
24.
Dunikov
D. O.
,
Malyshenko
S. P.
and
Zhakhovskii
V. V.
,
Corresponding States Law and Molecular Dynamics Simulations of the Lennard-Jones Fluid
,
J. Chem. Phys.
, Vol.
115
, pp.
6623
6631
,
2001
.
25.
Weng
J. G.
,
Park
S.
,
Lukes
J. R.
and
Tien
C. L.
,
2000
,
Molecular Dynamics Investigation of Thickness Effect on Liquid Films
,
J. Chemical Physics
, Vol.
113
, pp.
5917
5923
.
26.
Carey, V.P., 1992, Liquid-Vapor Phase Change Phenomena, Taylor and Francis, New York, NY.
27.
Xue
L.
,
Keblinski
P.
,
Phillpot
S. R.
,
Choi
S. U.-S.
and
Eastman
J. A.
,
2004
,
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,
Int. J. Heat Mass Transfer
, Vol.
47
, pp.
4277
4284
.
This content is only available via PDF.
You do not currently have access to this content.