We investigate Rayleigh-Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.

1.
Sample
A. K.
,
Hellawell
A.
,
The mechanisms of formation and prevention of channel segregation during alloy solidification
,
Metallurgical Transactions
A
15A
(
1984
)
2163
2173
.
2.
Sarazin
J. R.
,
Hellawell
A.
,
Channel formation in Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl H2O
,
Metallurgical Transactions A
19A
(
1998
)
1861
1871
.
3.
Amberg
G.
,
Homsy
G. M.
,
Nonlinear analysis of buoyant convection in binary solidification to channel formation
,
J. Fluid Mech.
252
(
1993
)
79
98
.
4.
Anderson
D. M.
,
Worster
M. G.
,
Weakly non-linear analysis of convection in mushy layers during the solidification of binary alloys
,
J. Fluid Mech.
302
(
1995
)
307
331
.
5.
Worster
M. G.
,
Instabilities of the liquid and mushy regions during solidification of alloys
,
J. Fluid. Mech.
237
(
1992
)
649
669
.
6.
Govender
S.
,
Vadasz
P.
,
Weak nonlinear analysis of moderate Stefan number oscillatory convection in rotating mushy layers
,
Transport in Porous Media
48
(
3
) (
2002
)
353
372
.
7.
Govender
S.
, 2002
On the linear stability of large Stefan number convection in rotating mushy layers for a new Darcy equation formulation
,
Transport in Porous Media
51
(
2
) (
2003
)
173
189
.
8.
KcKibbin
R.
,
Thermal convection in a porous layer: Effects of anisotropy and surface boundary conditions
,
Transport in Porous Media
1
(
1986
)
271
292
.
9.
Storesletten
L.
,
Natural convection in a horizontal porous layer with anisotropic thermal diffusivity
,
Transport in Porous Media
12
(
1993
)
19
29
.
10.
A.V. Kuznetsov, Thermal nonequilibrium forced convection in porous media, Transport Phenomena in Porous Media, Pergamon (An imprint of Elsevier Science), Netherlands, 1998, pp. 103–129.
11.
Vadasz
P.
,
Coriolis effect on gravity driven convection in a rotating porous layer heated from below
,
J. Fluid. Mech.
376
(
1998
)
351
375
.
12.
Handley
D.
,
Heggs
P. J.
,
Momentum and heat transfer mechanisms in regular shaped packings
,
Trans. Inst. Chem. Engrs.
46
(
1968
)
T251–T264
T251–T264
.
13.
P. Vadasz, Explicit conditions for local thermal equilibrium in porous media heat conduction, In Press Int. J. Heat Mass Transfer.
14.
Banu
N.
,
Rees
D. A. S.
,
Onset of Darcy-Benard convection using a thermal non-equilibrium model
,
Int. J. Heat Mass Transfer
45
(
2002
)
2221
2228
.
15.
Epherre
J. F.
,
Critere d’ apparition de la convection naturelle dans une couche poreuse anisotrope
,
Rev. Gen. Thermique
168
(
1975
)
949
950
This content is only available via PDF.
You do not currently have access to this content.