The three-dimensional flow of a Newtonian fluid in a microchannel with superhydrophobic walls is computed using a finite element analysis. Calculations of the fully-developed laminar flow of water under a pressure gradient of 1 psi/cm in an 80 μm high channel with superhydrophobic upper and lower surfaces containing a 2 μm pitch array of 0.2 μm square posts shows a 40 percent flow enhancement relative to the smooth, non-patterned surface case, and an apparent slip length of 5.4 μm. A sharp gradient is observed in the axial velocity field within 0.5 μm of the post surface and normal to the post center. The calculated axial velocity field away from the superhydrophobic surface agrees well with the analytical solution for two-dimensional channel flow with Navier’s slip condition applying at the channel wall. Mesh refinement studies indicate the important role that adequate resolution of the sharp gradient in the velocity field adjacent to the post surface plays in obtaining accurate flow enhancement predictions. Decreasing the relative contact area of the fluid with the solid portion of the channel surface, either by increasing the post-to-post spacing or decreasing the post size, results in a monotonic increase in the flow enhancement. Wetting of the fluid into the post structure is shown to dramatically decrease the calculated flow enhancement. Calculations of the flow enhancement for fixed surface properties and varying channel heights result in apparent slip lengths that agree to within 1 percent, suggesting that the macroscopic flow behavior is adequately characterized in terms of an apparent slip model, with the magnitude of the slip length a function of the post size, post spacing and wetting behavior that characterize the local flow field.

1.
ITRS, 2003, “International Technology Roadmap for Semiconductors,” http://public.itrs.net/Files/2003ITRS/Home2003.htm.
2.
Tuckerman, D. B., and Pease, R. F. W., 1981, “High performance heat sinking for VLSI,” IEEE Electronic Device Letters, Volume EDL.
3.
Singhal
V.
,
Garimella
S.
, and
Raman
A.
,
2004
, “
Microscale Pumping Technologies for Microchannel Cooling Systems
,”
Appl. Mech. Rev.
, Vol.
57
, No.
3
, pp.
191
221
.
4.
Kim, J., and Kim, C.-J., 2002, “Nanostructured surfaces for dramatic reduction of flow resitance in droplet-based microfluidics,” Proceedings of the IEEE Conference MEMS, Las Vegas, NV.
5.
Krupenkin
T. N.
,
Taylor
J. A.
,
Schneider
T. M.
, and
Yang
S.
,
2004
, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,”
Langmuir
, Vol.
20
, No.
10
,
3824
3827
.
6.
Oanda
T.
,
Shibuichi
S.
,
Satoh
N.
, and
Tsujii
K.
,
1996
, “
Super-Water-Repellent Fractal Surfaces
Langmuir
, Vol.
12
, No.
9
, pp.
2125
2127
.
7.
Shirtcliffe
N. J.
,
Aqil
A.
,
Evans
C.
,
McHale
G.
,
Newton
M. I.
,
Perry
C. C.
, and
Roach
P.
,
2004
, “
The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping
,”
J. Micromech. Microeng.
, Vol.
14
, pp.
1384
1389
.
8.
Yoshimitsu
Z.
,
Nakajima
A.
,
Watanabe
T.
, and
Hashimoto
K.
,
2002
, “
Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets
,”
Langmuir
, Vol.
18
, pp.
5818
5822
.
9.
Ou
J.
,
Perot
B.
, and
Rothstein
J. P.
,
2004
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids.
Vol.
16
, No.
12
, pp.
4635
4643
.
10.
Kistler, S. K., 1993, “Hydrodynamics of Wetting,” in Wettability, ed. Berg, J. C., Marcel Dekker, New York, pp. 311–429.
11.
Probstein, R., 1994, Physicochemical Hydrodynamics, Wiley.
12.
Blassey
R.
,
2003
,
Nature Materials
, Vol.
2
, pp.
301
306
.
13.
Shafrin
E. G.
, and
Zisman
W. A.
,
1964
, in
Contact Angle, Wettability and Adhesion
,
Advances in Chemistry series
, Vol.
43
, ed. Fowkes, F. M., American Chemical Society, Washington, D. C., pp.
145
167
.
14.
Cassie
A. B. D.
, and
Baxter
S.
,
1944
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
, Vol.
40
, pp.
546
551
.
15.
Watanabe, K., Udagawa, Y., and Udagawa, H., 1999, “Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellant wall,” J. Fluid Mech., pp. 225–238.
16.
Hocking
L. M.
,
1976
, “
A moving fluid on a rough surface
,”
J. Fluid Mech.
Vol.
76
, No.
4
, pp.
801
817
.
17.
O¨ner
D.
, and
McCarthy
T. J.
,
2000
, “
Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability
,”
Langmuir
, Vol.
16
, pp.
7777
7782
.
18.
Whitaker, S., 1998, The Method of Volume Averaging - Theory and Applications of Transport in Porous Media, Springer, New York.
19.
Navier
C. L. M. H.
,
1823
, “
Me´moire sur les du mouvement des fluids
,”
Me´moires de l’Acade´mie Royale des Sciences de l’Institut de France
, Vol.
6
, pp.
389
440
.
20.
Lauga, E., Brenner, M. P., and Stone, H. A., 2005, “Microfluidics: The No-Slip Boundary Condition,” to appear as Ch. 15 in Handbook of Experimental Fluid Dynamics, eds. Foss, J., Tropea, C., and Yarin, A.
21.
Lauga
E.
, and
Stone
H. A.
,
2003
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
, vol.
489
, pp.
55
77
.
22.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley and Sons, New York.
23.
FIDAP Theory Manual, 2004, Version 8.7.0, Fluent, Inc.
24.
Hughes
T. J. R.
,
Franca
L. P.
, and
Becestra
M.
,
1986
, “
A new finite-element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition - a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations
,”
Comp. Meth. Appl. Mech. Engr.
, Vol.
59
, pp.
85
99
.
25.
Tezduyar
T. E.
,
Shih
R.
,
Mittal
S.
, and
Ray
S. E.
,
1992
, “
Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements
,”
Comp. Meth. Appl. Mech. Engr.
, Vol.
95
, pp.
221
242
.
26.
Babuska
I.
,
Oden
J. T.
, and
Lee
J. K.
,
1977
, “
Mixed-hybrid finite element approximations of second-order elliptic boundary value problems
,”
Comp. Meth. Appl. Mech. Engr.
, Vol.
14
, pp.
175
206
.
27.
Brezzi
F.
,
1974
, “
On the existence and uniqueness and approximation of saddle-point problems arising from Lagrange multipliers
,”
Anal. Numer
, Vol.
2
, pp.
129
154
.
28.
Shadid, J. N., Salinger, A. G., Schmidt, R. C., Smith, T. M., Moffat, H. K., Hutchinson, S. A., Hennigan, G. L., and Devine, K. D., 1999, “MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development,” Sandia Labs Technical Report, SAND98-2864.
This content is only available via PDF.
You do not currently have access to this content.