A nonequilibrium Green’s function (NEGF) method is used to simulate the phonon transport across a strained thin film between two semi-infinite contacts. The calculation of dynamical matrix, self-energy matrix and transmission function are discussed. Uncoupled Green’s functions are computed numerically using a block tridiagonal algorithm. The numerical role of the broadening constant is investigated. The bulk density of states in a single atomic chain is calculated and compares well with an analytical solution. The transmission function and thermal conductance across the thin film are evaluated for two different configurations (Ge-Si-Ge and Si-Ge-Si) and compared against homogeneous bulk systems (Si only and Ge only), indicating that heterogeneous interfaces reduce thermal conductance significantly.

1.
Chen
G.
,
Dresselhaus
M.
,
Dresselhaus
G.
,
Fleurial
J.
, and
Caillat
T.
,
2003
. “
Recent Developments in Thermoelectric Materials
.”
International Materials Reviews
,
48
(
1
), p.
45
45
.
2.
Ju
Y.
, and
Goodson
K.
,
1999
. “
Phonon Scattering in Silicon Films with Thickness of Order 100 nm
.”
Applied Physics Letters
,
74
(
20
), p.
3005
3005
.
3.
Thompson
S.
,
Armstrong
M.
,
Auth
C.
,
Alavi
M.
,
Buehler
M.
,
Chau
R.
,
Cea
S.
,
Ghani
T.
,
Glass
G.
,
Hoffman
T.
,
Jan
C.
,
Kenyon
C.
,
Klaus
J.
,
Kuhn
K.
,
Ma
Z.
,
Mcintyre
B.
,
Mistry
K.
,
Murthy
A.
,
Obradovic
B.
,
Nagisetty
R.
,
Nguyen
P.
,
Sivakumar
S.
,
Shaheed
R.
,
Shifren
L.
,
Tufts
B.
,
Tyagi
S.
,
Bohr
M.
, and
El-Mansy
Y.
,
2004
. “
A 90-nm Logic Technology Featuring Strained-Silicon
.”
IEEE Transactions on Electron Devices
,
51
(
11
), p.
1790
1790
.
4.
Young
D.
, and
Maris
H.
,
1989
. “
Lattice-dynamical calculation of the kapitza resistance between fcc lattices
.”
Physical Review B
,
40
(
6
), p.
3685
3685
.
5.
Picu
R.
,
Borca-Tasciuc
T.
, and
Pavel
M.
,
2003
. “
Strain and size effects on heat transport in nanostructure
.”
Journal of Applied Physics
,
93
(
6
), p.
3535
3535
.
6.
Abramson
A.
,
Tien
C.
, and
Majumdar
A.
,
2002
. “
Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study
.”
Journal of Heat Transfer
,
124
(
5
), p.
963
963
.
7.
Mingo
N.
, and
Yang
L.
,
2003
. “
Phonon Transport in Nanowires Coated with an Amorphous Material: An Atomistic Green’s Function Approach
.”
Physical Review B
,
68
, p.
245406
245406
.
8.
Mingo, N., and Yang, L., 2004. “Erratum: Phonon Transport in Nanowires Coated with an Amorphous Material: An Atomistic Green’s Function Approach [Phys. Rev. B 68, 245406 (2003)].” Physical Review B, p. 249901.
9.
Shilkrot
L.
,
Srolovitz
D.
, and
Tersoff
J.
,
2000
. “
Morphology evolution during the growth of strained-layer superlattices
.”
Physical Review B
,
62
(
12
), p.
8397
8397
.
10.
Ohring, M., 2001. Materials Science of Thin Films. Academic Press.
11.
Wortman
J.
, and
Evans
R.
,
1965
. “
Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium
.”
Journal of Applied Physics
,
36
, p.
153
153
.
12.
Harrison, W. A., 1989. Electronic Structure And the Properties of Solids. Dover Publications, Inc., New York.
13.
Weber
W.
,
1977
. “
Adiabatic bond charge model for the phonons in diamond, si, ge, and a¸-sn
.”
Physical Review B
,
15
(
10
), p.
4789
4789
.
14.
Mingo
N.
,
2003
. “
Calculation of si nanowire thermal conductivity using complete phonon dispersion relations
.”
Physical Review B
,
68
, p.
113308
113308
.
15.
Lannoo, M., and Friedel, P., 1991. Atomic and Electronic Structure of Surfaces. Springer-Verlag.
16.
Guinea
F.
,
Tejedor
C.
,
Flores
F.
, and
Louis
E.
,
1983
. “
Effective Two-dimensional Hamiltonian at Surfaces
.”
Physical Review B
,
28
(
8
), p.
4397
4397
.
17.
Golub, G., and Loan, C. V., 1996. Matrix Computations, 3rd ed. The John Hopkins University Press, Baltimore and London.
18.
Kittel, C., 2005. Introduction to Solid State Physics, 8th ed. John Wiley & Sonc, Inc.
19.
Tien, C.-L., Majumdar, A., and Gerner, F., 1997. Microscale Energy Transfer, 1st ed. Taylor and Francis.
This content is only available via PDF.
You do not currently have access to this content.