A localized radial basis function (RBF) meshless method is developed for coupled viscous fluid flow and convective heat transfer problems. The method is based on new localized radial-basis function (RBF) expansions using Hardy Multiquadrics for the sought-after unknowns. An efficient set of formulae are derived to compute the RBF interpolation in terms of vector products thus providing a substantial computational savings over traditional meshless methods. Moreover, the approach developed in this paper is applicable to explicit or implicit time marching schemes as well as steady-state iterative methods. We apply the method to viscous fluid flow and conjugate heat transfer (CHT) modeling. The incompressible Navier-Stokes are time marched using a Helmholtz potential decomposition for the velocity field. When CHT is considered, the same RBF expansion is used to solve the heat conduction problem in the solid regions enforcing temperature and heat flux continuity of the solid/fluid interfaces. The computation is accelerated by distributing the load over several processors via a domain decomposition along with an interface interpolation tailored to pass information through each of the domain interfaces to ensure conservation of field variables and derivatives. Numerical results are presented for several cases including channel flow, flow in a channel with a square step obstruction, and a jet flow into a square cavity. Results are compared with commercial computational fluid dynamics code predictions. The proposed localized meshless method approach is shown to produce accurate results while requiring a much-reduced effort in problem preparation in comparison to other traditional numerical methods.

1.
Belytscho
 
T.
,
Lu
 
Y. Y.
, and
Gu
 
L.
, “
Element-free Galerkin methods
,”
Int. J. Num. Methods
, Vol.
37
,
1994
, pp.
229
256
.
2.
Atluri, S.N. and Shen, S., The Meshless Method, Tech. Science Press, Forsyth, 2002.
3.
Atluri
 
S. N.
and
Zhu
 
T.
, “
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics
,”
Computational Mechanics
, Vol.
22
,
1998
, pp.
117
127
.
4.
Liu, G.R., Mesh Free Methods, CRC Press, Boca Raton, 2003.
5.
Melenk
 
J. M.
and
Babuska
 
I.
, “
The partition of unity finite element method: basic theory and application
,”
Comp. Meth. Appl. Mechanics and Eng.
, Vol.
139
,
1996
, pp.
289
316
.
6.
Kansa
 
E. J.
, “
Multiquadrics- a scattered data approximation scheme with applications to computational fluid dynamics I - surface approximations and partial derivative estimates
,”
Comp. Math. Appl.
, Vol.
19
,
1990
, pp.
127
145
.
7.
Kansa
 
E. J.
, “
Multiquadrics- a scattered data approximation scheme with applications to computational fluid dynamics II - solutions to parabolic, hyperbolic and elliptic partial differential equations
,”
Comp. Math. Appl.
, Vol.
19
,
1990
, pp.
147
161
.
8.
Kansa
 
E. J.
and
Hon
 
Y. C.
, “
Circumventing the Ill-Conditioning Problem with Multiquadric Radial Basis Functions: Applications to Elliptic Partial Differential Equations
,”
Comp. Math. Appl.
,
2000
, Vol.
39
, pp.
123
137
.
9.
Franke
 
R.
, “
Scattered data interpolation: Test of some methods
,”
Math. Comput.
, Vol.
38
,
1982
, pp.
181
200
.
10.
Mai-Duy
 
N.
and
Tran-Cong
 
T.
, “
Mesh-Free Radial Basis Function Network Methods with Domain Decomposition for Approximation of Functions and Numerical Solution of Poisson’s Equation
,”
Engineering Analysis with Boundary Elements
,
2002
, Vol.
26
, pp.
133
156
.
11.
Cheng
 
A. H.-D.
,
Golberg
 
M. A.
,
Kansa
 
E. J.
,
Zammito
 
G.
, “
Exponential Convergence and H-c Multiquadric Collocation Method for Partial Differential Equations
,”
Numerical Methods in P.D.E.
, Vol.
19
, No.
5
,
2003
, pp.
571
594
.
12.
Gottlieb, D. and Orzag, S.A., Numerical Analysis of Spectral Methods: theory and applications, Society for Industrial and Applied Mathematics, Bristol, England, 1977.
13.
Maday
 
Y.
and
Quateroni
 
A.
, “
Spectral and Pseudo-Spectral Approximations of the Navier-Stokes Equations
,”
SIAM J. Numerical Analysis
,
1982
, Vol.
19
, No.
4
, pp.
761
780
.
14.
Patera
 
A.
, “
A Spectral Element Method of Fluid Dynamics: laminar flow in a channel expansion
,”
J. of Computational Physics
,
1984
, Vol.
54
, pp.
468
488
.
15.
Macaraeg
 
M.
and
Street
 
C. L.
, “
Improvement in Spectral Collocation Discretization Through a Multiple Domain Technique
,”
Applied Numerical Mathematics
,
1986
, Vol.
2
, pp.
95
108
.
16.
Hwar
 
C. K.
,
Hirsch
 
R.
,
Taylor
 
T.
, and
Rosenberg
 
A. P.
, “
A Pseudo-Spectral Matrix Element Method for Solution of Three-Dimensional Incompressible Flows and its Parallel Implementation
,”
J. of Computational Physics
,
1989
, Vol.
83
, pp.
260
291
.
17.
Fasshauer, G, “RBF Collocation Methods as Pseudo-Spectral Methods,” Boundary Elements XVII, Kassab, A., Brebbia, C.A. and Divo, E. (eds.), WIT Press, 2005, pp. 47–57.
18.
Powell, M.J.D., “The Theory of Radial Basis Function Approximation,” in Advances in Numerical Analysis, Vol. II, Light, W., ed., Oxford Science Publications, Oxford, 1992. pp. 143–167.
19.
Buhmann, M.D., Radial Basis Functions: Theory and Implementation, Cambridge University Press, Cambridge, 2003.
20.
Dyn
 
N.
,
Levin
 
D.
, and
Rippa
 
S.
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions
,”
SIAM J. of Sci. Stat. Computing
,
1986
, Vol.
7
, No.
2
, pp.
639
659
.
21.
Brebbia, C.A., Partridge, P. and Wrobel, L.C., The Dual Reciprocity Boundary Element Method, Computational Mechanics and Elsevier Applied Science, Southampton, U.K., 1992.
22.
Golberg
 
M.
,
Chen
 
C. S.
, and
Bowman
 
H.
, “
Some Recent Results and Proposals for the Use of Radial Basis Functions in the BEM
,”
Engineering Analysis with Boundary Elements
,
1999
, Vol.
23
, pp.
285
296
.
23.
Rahaim
 
C. P.
and
Kassab
 
A. J.
, “
Pressure Correction DRBEM Solution for Heat Transfer and Fluid Flow in Incompressible Viscous Fluids
,”
Engineering Analysis with Boundary Elements
, Vol.
18
, No.
4
,
1996
, pp.
265
272
.
24.
Sarler, B., Tran-Cong, T., and Chen, C.S., “Meshfree Direct and Indirect Local Radial Basis Function Collocation Formulations for Transport Phenomena,” Boundary Elements XVII, Kassab, A., Brebbia, C.A. and Divo, E. (eds.), WIT Press, 2005, pp. 417–428.
25.
Sarler, B. and Vertnik, R., “Local Explicit Radial Basis Function Collocation Method for Diffusion Problems,” Comput. Math. Applic., (in print), 2005.
26.
Hardy
 
R. L.
,
Multiquadric Equations of Topography and Other Irregular Surfaces
,
Journal of Geophysical Research
, Vol.
176
, pp.
1905
1915
.
27.
Kassab
 
A.
,
Divo
 
E.
,
Heidmann
 
J.
,
Steinthorsson
 
E.
, and
Rodriguez
 
F.
, “
BEM/FVM Conjugate Heat Transfer Analysis of a Three-Dimensional Film Cooled Turbine Blade
,”
International Journal for Numerical Methods in Heat and Fluid Flow
, Vol.
13
, No.
5
,
2003
, pp.
581
610
.
28.
Kassab, A.J. and Aliabadi, M.H. (eds.), Advances in Boundary Elements: Coupled Field Problems, WIT Press, Southampton and Boston, 2001.
29.
Rahaim
 
C. P.
,
Kassab
 
A. J.
, and
Cavalleri
 
R.
, “
A Coupled Dual Reciprocity Boundary Element/Finite Volume Method for Transient Conjugate Heat Transfer
,”
AIAA Journal of Thermophysics and Heat Transfer
, Vol.
14
, No.
1
,
2000
, pp.
27
38
.
30.
He
 
M.
,
Bishop
 
P.
,
Kassab
 
A. J.
, and
Minardi
 
A.
, “
A Coupled FDM/BEM solution for the Conjugate Heat Transfer Problem
,”
Numerical Heat Transfer Part B: Fundamentals
, Vol.
28
, No.
2
,
1995
, pp.
139
154
.
31.
Li, H. and Kassab, A.J., “A Coupled FVM/BEM Solution to Conjugate Heat Transfer in Turbine Blades,” AIAA Paper 94-1981, presented at the AIAA/ASME 6th Joint Thermophysics Conference, June 20–23, 1994, Colorado Springs, Colorado.
32.
Divo
 
E. A.
,
Kassab
 
A. J.
and
Rodriguez
 
F.
, “
Parallel Domain Decomposition Approach for large-scale 3D Boundary Element Models in Linear and Non-Linear Heat Conduction
,”
Numerical Heat Transfer Part B: Fundamentals
, Vol.
44
, No.
5
,
2003
, pp.
417
437
.
33.
Divo, E., Kassab, A.J., Mitteff, E., and Quintana, L. “A Parallel Domain Decomposition Technique for Meshless Methods Applications to Large-Scale Heat Transfer Problems,” ASME Paper: HT-FED2004-56004.
34.
Divo, E. and Kassab, A.J., “Effective Domain Decomposition Meshless Formulation of Fully-Viscous Incompressible Fluid Flows,” Boundary Elements XVII, Kassab, A., Brebbia, C.A. and Divo, E. (eds.), WIT Press, 2005, pp. 67–77.
35.
Divo, E. and Kassab, A.J., “A Meshless Method for Conjugate Heat Transfer,” Proceedings of ECCOMAS Coupled Problems 2005, M. Papadrakakis, E. On˜ate and B. Schrefler (Eds.), Santorini, Greece, 2005.
36.
Divo
 
E.
and
Kassab
 
A. J.
, “
A Meshless Method for 36 Conjugate Heat Transfer Problems
,”
Engineering Analysis
, Vol.
29
, No.
2
,
2005
, pp.
136
149
.
37.
Harlow
 
F. H.
and
Welch
 
J. E.
,
1965
,
Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluids with a Free Surface
,
Physics of Fluids
, Vol.
8
, 1965, pp.
2182
2189
.
38.
Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Press, 1980.
39.
Orlanski
 
I.
,
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
1976
,
J. Comp. Phys.
, Vol.
21
, pp,
251
269
.
This content is only available via PDF.
You do not currently have access to this content.