The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.

1.
Strada
M.
and
Heninrich
J. C.
, “
Heat Transfer Rates in Natural Convection a High Rayleigh Number in Rectangular Enclosure: a Numerical Study
,”
Num. Heat Transfer
, vol.
5
, pp.
81
93
,
1982
.
2.
Bertin
H.
and
Ozoe
H.
, “
Numerical study of Two-Dimensional Natural Convection in a Horizontal fluid Layer Heated from Below, by Finite-Element Methods: Influence of Prandtl Number
,”
Int. J. Heat Mass Transfer
, vol.
29
No.
3
, pp.
439
449
,
1986
.
3.
Viskanta
R.
,
Kim
D. M.
and
Gau
C.
, “
Three-Dimensional Natural Convection Heat Transfer of a Liquid Metal in a Cavity
,”
Int. J. Heat Mass Transfer
, vol.
29
No.
3
, pp.
475
485
,
1986
.
4.
Sparrow
E. M.
and
Cess
R. D.
, “
The Effect of a Magnetic Field on Free Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
, vol.
3
, pp.
267
274
,
1961
.
5.
Hunt
R.
and
Wilks
G.
, “
Low Prandtl Number MagnetoHydrodynamic Natural Convection in a Strong Cross Field
,”
Num. Heat Transfer
, vol.
4
, pp.
303
316
,
1981
.
6.
Hunt
J. C. R.
, “
Magnetohydrodynamic Flow in Rectangular Ducts
,”
J. Fluid Mech.
, vol.
21
, part 4, pp.
577
590
,
1965
.
7.
Papailiou
D. D.
and
Lykoudis
P. S.
, “
Magneto - fluid —Mechanic Laminar Natural Convection — An Experiment
,”
Int. J. Heat Mass Transfer
, vol.
11
, pp.
1385
1391
,
1968
.
8.
Seki
M.
,
Kawamura
H.
and
Sanokawa
K.
, “
Natural Convection of Mercury in a Magnetic Field Parallel to the Gravity
,”
J. of Heat Transfer
, vol.
101
, pp.
227
232
,
1979
.
9.
Michiyoshi
I.
,
Takahashi
O.
and
Serizawa
A.
, “
Natural Convection Heat Transfer from Horizontal Cylinder to Mercury under Magnetic Field
,”
Int. J. Heat Mass Transfer
, vol.
19
, pp.
1021
1029
,
1975
.
10.
Ozoe
H.
and
Mauro
E.
, “
Magnetic and Gravitational Natural Convection of Melted Silicon-Two-Dimensional Numerical Computations for the Rate of Heat Transfer
,”
JSME Int. J.
, vol.
30
No.
263
, pp.
774
784
,
1987
.
11.
Garandet
J. P.
,
Alboussiere
T.
and
Moreau
R.
, “
Buoyancy Driven Convection in a Rectangular enclosure with a transverse magnetic field
,”
Int. J. Heat Mass Transfer
, vol.
35
No.
4
, pp.
741
748
,
1992
.
12.
Ozoe
H.
and
Okada
K.
, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure
,”
Int. J. Heat Mass Transfer
, vol.
32
No.
10
, pp.
1939
1954
,
1989
.
13.
Okada
K.
and
Ozoe
H.
, “
Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either the X, Y, or Direction
,”
J. of Heat Transfer
, vol.
114
, pp.
107
114
,
1992
.
14.
Mo¨ßner
R.
and
Mu¨ller
U.
, “
A Numerical Investigation of Three-Dimensional Magnetoconvection in Rectangular cavities
,”
Int. J. Heat Mass Transfer
, vol.
42
, pp.
1111
1121
,
1999
.
15.
Rudraiah
N.
,
Barron
R. M.
,
Venkatachalappa
M.
y
Subbaraya
C. K.
, “
Effect of a Magnetic Field on Free Convection in a Rectangular Enclosure
,”
Int. J. Engng. Sci.
, vol.
33
, No.
8
, pp.
1075
1084
,
1995
.
16.
Burr
U.
and
Mu¨ller
U.
, “
Rayleigh-Be´rnard convection in liquid metal layers under the influence of a horizontal magnetic field
,”
J. Fluid Mech.
, vol.
453
, pp.
345
369
,
2002
.
17.
Juel
A.
,
Mullin
T.
,
Ben Hadid
H.
and
Henry
D.
, “
Magnetohydrodynamic Convection in Molten Gallium
,”
J. Fluid Mech.
, vol.
378
, pp.
97
97
,
1999
.
18.
Lemoff
V.
and
Lee
A. P.
, “
An AC Magnetohydrodynamic Micropump
,”
Sensors and Actuators
, vol.
B 63
, pp.
178
185
,
2000
.
19.
Zhong
J.
,
Yi
M.
and
Bau
H. H.
, “
Magneto Hydrodynamic (MHD) Pump Fabricated with Ceramic Tapes
,”
Sensors and Actuators
, vol.
A96
, pp.
59
66
,
2002
.
20.
Wang
P. J.
,
Chang
C. Y.
and
Chang
M. L.
, “
Simulation of Two-Dimensional Fully Developed Laminar Flow for a Magneto-Hydrodynamic (MHD) Pump
,”
Biosensors and Bioelectronics
, vol.
20
, pp.
115
121
,
2004
.
21.
P. H. Oosthuizen and D. Naylor, Introduction to Convective Heat Transfer Analysis, McGraw-Hill, New York, 1999.
22.
Van Doormal
J. P.
and
Raithby
G. D.
,
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,
Numerical Heat Transfer
,
7
,
147
163
,
1984
.
23.
Ferziger J.H. and Peric M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1996.
24.
Van der Vost
H. A.
,
BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Non-Symmetric Linear Systems
,
SIAM J. Sci. Stat. Comput.
,
13
,
631
644
,
1992
.
25.
Golub, G. H. and Van Loan, Ch. F., Matrix Computations, Johns Hopkins Series in the Mathematical Sciences, Baltimore, 1996.
26.
Patankar Patankar, S.V., Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corp., Washington, D.C, 1980.
This content is only available via PDF.
You do not currently have access to this content.