In the present paper, natural convection inside a square cavity with one and three undulations on the top wall has been carried out. The top wall is heated by a spatially varying temperature and other three walls are kept constant lower temperature. The integral forms of the governing equations are solved numerically using finite-volume method in non-orthogonal body-fitted coordinate system. SIMPLE algorithm with higher-order up-winding scheme are used. The streamlines and isothermal lines are presented for different Rayleigh number (103-106) and a fluid having Prandtl number 0.71. Results are presented in the form of local and average Nusselt number distribution for two different undulations (1 and 3) with wave amplitude of 0.05.

1.
de Vahl Davis
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
International Journal for Numerical Methods in Fluids
,
3
, pp.
249
264
.
2.
Markatos
N. C.
, and
Perikleous
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
International Journal of Heat and Mass Transfer
,
27
(
5
), pp.
755
772
.
3.
Ostrach
S.
,
1988
, “
Natural Convection in Enclosures
,”
Journal of Heat Transfer
50th Anniversary Issue,
110
(
4–B
), pp.
1175
1190
.
4.
Hadjisophocleous
G. V.
,
Sousa
A. C. M.
, and
Venart
J. E. S.
,
1988
, “
Prediction of Transient Natural Convection in Enclosures of Arbitrary Geometry using a Nonorthogonal Numerical Model
,”
Numerical Heat Transfer
,
13
, pp.
373
392
.
5.
Sarris
I. E.
,
Lekakis
I.
, and
Vlachos
N. S.
,
2002
, “
Natural Convection in a 2D Enclosure with Sinusoidal Upper Wall Temperature
,”
Numerical Heat Transfer Part A: Applications
,
42
, pp.
513
530
.
6.
Adjlout
L.
,
Imine
O.
,
Azzi
A
, and
Belkadi
M.
,
2002
, “
Laminar Natural Convection in an Inclined Cavity with a Wavy Wall
,”
International Journal of Heat and Mass Transfer
,
45
, pp.
2141
2152
.
7.
Das
P. K.
, and
Mahmud
S.
,
2003
, “
Numerical Investigation of Natural Convection inside a Wavy Enclosure
,”
International Journal of Thermal Sciences
,
42
, pp.
397
406
.
8.
Dalal, A., and Das, M. K., 2003, “ Laminar Natural Convection in a Complicated Cavity with Spatially Variable Upper Wall Temperature,” Proceedings of 2003 ASME Summer Heat Transfer Conferences, Las Vegas, Nevada, USA.
9.
Dalal
A.
, and
Das
M. K.
,
2005
, “
Laminar Natural Convection in an Inclined Complicated Cavity with Spatially Variable Wall Temperature
,”
International Journal of Heat and Mass Transfer
,
48
, pp.
2986
3007
.
10.
Maliska
C. R.
, and
Raithby
G. D.
,
1984
, “
A Method for Computing Three Dimensional Flows Using Non-Orthogonal Boundary-Fitted Co-Ordinates
,”
International Journal for Numerical Methods in Fluids
,
4
, pp.
519
537
.
11.
O¨zisik, M. N., 1994, Finite Difference Methods in Heat Transfer, CRC Press, London.
12.
Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, Numerical Grid Generation, North Holland.
13.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York.
14.
Hayase
T.
,
Humphrey
J. C.
, and
Greif
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
Journal of Computational Physics
,
98
, pp.
180
118
.
15.
Versteeg, H. K., and Malalasekera, W., 1995, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Longman Group Ltd., Malaysia.
16.
Van Doormall
J. P.
, and
Raithby
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numerical Heat Transfer
,
7
, pp.
147
163
.
This content is only available via PDF.
You do not currently have access to this content.