This paper reports on one part of a research project supported by NSF, which aims at developing a multi-scale methodology for systematic microstructure prediction in thermo-mechanical processing of metals. Based on combining mesoscopic microstructure models with macroscopic process formulations, the methodology is expected to provide universally applicable and accurate microstructure prediction capabilities. Cellular Automata (CA) models have been widely used in scientific studies of various microstructural phenomena. This paper discusses the modeling of the static recrystallization phenomenon by employing a regular CA algorithm. The recrystallization processes of single-phase systems under different nucleation conditions are simulated followed by the recrystallization kinetics analysis for 200 × 200 two-dimensional lattice. The performed simulations of static recrystallization confirm that the recrystallized volume fractions are time dependent. Furthermore, the simulated microstructures validate the following Johnson-Mehl-Avrami-Kolmogorov (JMAK) model according to which the recrystallized volume fraction is a sigmoidal function of time, and their evolution matches the JMAK equation with the expected exponents.

1.
Saetre
T. O.
,
Hunderi
O.
,
Nes
E.
,
1986
, “
Computer simulation of primary recrystallization microstructures: the effects of nucleation and growth kinetics
,”
Acta Metallurgica
,
34
(
6
), pp.
981
987
.
2.
Marthinsen
K.
,
Lohne
O.
, and
Nes
E.
,
1989
, “
Development of recrystallization microstructures studied experimentally and by computer simulation
,”
Acta Metallurgica
,
37
(
1
), pp.
135
145
.
3.
Humphreys
F. J.
,
1992
, “
Modelling mechanisms and microstructures of recrystallization
,”
Materials Science and Technology
,
8
(
2
), pp.
135
143
.
4.
Humphreys
F. J.
,
1992
, “
Network model for recovery and recrystallization
,”
Scripta Metallurgica et Materialia
,
27
(
11
), pp.
1557
1562
.
5.
Weygand
D.
,
Brechet
Y.
and
Lepinoux
J.
,
1999
, “
Zener pinning and grain growth: a two-dimensional vertex computer simulation
,”
Acta Materialia
,
47
(
3
), pp.
961
972
.
6.
Hesselbarth
H. W.
, and
Gobel
I. R.
,
1991
, “
Simulation of recrystallization by cellular automata
,”
Acta Metallurgica et Materialia
,
39
(
9
), pp.
2135
2143
.
7.
Marx
V.
,
Reher
F. R.
, and
Gottstein
G.
,
1999
, “
Simulation of primary recrystallization using a modified three-dimensional cellular automaton
,”
Acta Materialia
,
47
(
4
), pp.
1219
1230
.
8.
Ding
R.
, and
Guo
Z. X.
,
2001
, “
Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization
,”
Acta Materialia
,
49
, pp.
3163
3175
.
9.
Liu
Y.
,
Baudin
T.
, and
Penelle
R.
,
1996
, “
Simulation of normal grain growth by cellular automata
,”
Scripta Materialia
,
34
(
11
), pp.
1679
1683
.
10.
Geiger
J.
,
Roosz
A.
, and
Barkoczy
P.
,
2001
Simulation of grain coarsening in two dimensions by cellularautomaton
,”
Acta Materialia
,
49
, pp.
623
629
.
11.
Chen
L.
,
1995
, “
A novel computer simulation technique for modeling grain growth
,”
Scripta Metallurgica et Materialia
,
32
(
1
), pp.
115
120
.
12.
Fan
D.
,
Geng
C.
, and
Chen
L.
,
1997
, “
Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model
,”
Acta Materialia
,
45
(
3
), pp.
1115
1126
.
13.
Fan
D.
,
Chen
L.
, and
Chen
S. P.
,
1997
, “
Effect pf grain boundary width on grain growth in a diffuse-interface field model
,”
Materials Science and Engineering A
,
238
, pp.
78
84
.
14.
Rollett
A. D.
, and
Raabe
D.
,
2001
, “
A hybrid model for mesoscopic simulation of recrystallization
,”
Computational Materials Science
,
21
, pp.
69
78
.
15.
Humphreys, F. J., and Hatherly, M., 1995, “Recrystallization and Related Annealing Phenomena,” Pergamon.
16.
Doherty
R. D.
,
Hughes
D. A.
,
Humphreys
F. J.
,
Jonas
J. J.
,
Jensen
D. J.
,
Kassner
M. E.
,
King
W. E.
,
McNelley
T. R.
,
McQueen
H. J.
, and
Rollett
A. D.
,
1997
, “
Current issues in recrystallization: a review
,”
Materials Science and Engineering A
,
238
, pp.
219
274
.
17.
Ye
W.
,
Gall
R. L.
, and
Saindrenan
G.
,
2002
, “
A study of the recrystallization of an IF steel by kinetics models
,”
Materials Science and Engineering A
,
332
, pp.
41
46
.
18.
Yu
Q.
, and
Esche
S. K.
,
2003
, “
Three-dimensional grain growth modeling with a Monte Carlo algorithm
,”
Materials Letter
,
57
, pp.
4622
4626
.
19.
Yu
Q.
, and
Esche
Sven K.
,
2003
, “
A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency
,”
Computational Materials Science
,
27
, pp.
259
270
.
20.
Yu
Q.
, and
Esche
Sven K.
,
2002
, “
Modeling of grain growth kinetics with Read-Shockley grain boundary energy by a modified Monte Carlo algorithm
,”
Materials Letters
,
56
, pp.
47
52
.
21.
Miodownik
M. A.
,
2002
, “
A review of microstructural computer models used to simulate grain growth and recrystallization in aluminum alloys
,”
Journal of Light Metals
,
2
, pp.
125
135
.
22.
Avrami
M.
,
1939
, “
Kinetics of phase change. I
,”
Journal of Chemical Physics
,
7
, pp.
1103
1112
.
23.
Avrami
M.
,
1940
, “
Kinetics of phase change. II
,”
Journal of Chemical Physics
,
8
, pp.
212
224
.
24.
Avrami
M.
,
1941
, “
Kinetics of phase change. III
,”
Journal of Chemical Physics
,
9
, pp.
177
184
.
25.
Srolovitz
D. J.
,
Grest
G. S.
,
Anderson
M. P.
and
Rollett
A. D.
,
1988
, “
Computer simulation of recrystallization - II heterogeneous nucleation and growth
,”
Acta Metall.
36
, pp.
2115
2128
.
This content is only available via PDF.
You do not currently have access to this content.