The morphology and properties of the extruded polymeric foams are affected by the geometry of extrusion die. In this paper, the flow in the slit die was simulated using POLYFLOW software package to predict the pressure distribution and residence time. Then the pressure drop rate in the die was calculated. The results for seven dies with different length (L) and gap (H) of the straight section were compared. The effects of the L and H on the nucleation position were analyzed. Based on the critical foaming pressure (Pf), the minimum length and maximum gap providing required pressure drop were determined under a constant gap and a constant length, respectively.
Volume Subject Area:
Fluids Engineering
1.
Martin J., Waldman F. A., and Suh N. P., 1982, SPE ANTEC Tech. Papers. 28, 674.
2.
Suh N. P., 2003, “Impact of Microcellular Plastics on Industrial Practice and Academic Research.” Macromol. Symp. 201, 187–201.
3.
Siripurapu
S.
Gay
Y. J.
Royer
J. R.
Desimone
J. M.
Khan
S. A.
Spontak
R. J.
2000
, “Microcellular Polymeric Foams (MPFs) Generated Continuously in Supercritical Carbon Dioxide
.” Mat. Res. Soc. Symp.
629
, FF9.9.1–FF9.9.6
FF9.9.1–FF9.9.6
.4.
Blizard K. Dr., Pallaver M., “Mucell Microcellular Foams Enter Continuous Production.” http://www.trexel.com.
5.
Vanvchelen J., Perugini C., Deweerdt M., Chen L., and Burnham T., “Microcellular PVC Foam For Thin Wall Profile.” http://www.trexel.com.
6.
Blizard K., Anderson J., and Schro¨der A., “Microcellular Foaming of TPV Materials in Automotive Weather Seal Applications.” http://www.trexel.com.
7.
Richard
G.
Louis
E. D.
2003
, “Continuous Extrusion of Microcellular Polycarbonate
.” Poly. Eng. Sci.
, 43
, 1361
–1377
.8.
Xu
X.
Park
C. B.
Xu
D. L.
Pop-Iliev
R.
2003
, “Effects of Die Geometry on Cell Nucleation of PS Foams Blown with CO2
.” Poly. Eng. Sci.
, 43
, 1378
–1390
.9.
Han
X. M.
Koelling
K. W.
Tomasko
D. L.
Lee
L. J.
2003
, “Effect of Die Temperature on the Morphology of Microcellular Foams
.” Poly. Eng. Sci.
, 43
, 1206
–1220
.10.
Park
C. B.
Behravesh
A. H.
Venter
R. D.
1998
, “Low Density Microcellular Foam Processing in Extrusion Using CO2
.” Poly. Eng. Sci.
, 38
, 1812
–1823
11.
Baldwin
D. F.
Park
C. B.
Suh
N. P.
1996
, “An Extrusion System for the Processing of Microcellular Polymer Sheets: Shaping and Cell Growth Control
.” Poly. Eng. Sci.
, 36
, 1425
–1435
.12.
Baldwin
D. F.
Park
C. B.
Suh
N. P.
1998
, “Microcellular Sheet Extrusion System Process Design Models for Shaping and Cell Growth Control
.” Poly. Eng. Sci.
, 38
, 674
–688
.13.
Park
C. B.
Baldwin
D. F.
Suh
N. P.
1995
, “Effect of the Pressure Drop Rate on Cell Nucleation in Contimuous Processing of Microcellular Polymers
.” Poly. Eng. Sci.
35
, 432
–440
.14.
Park
C. B.
Cheung
L. K.
1997
, “A Study of Cell Nucleation in the Extrusion of Polypropylene Foams
.” Poly. Eng. Sci.
, 37
, 1
–10
.15.
Han
X. M.
Koelling
K. W.
Tomasko
D. L.
2002
, “Continuous Microcellular Polystyrene Foam Extrusion with Supercritical CO2
.” Poly. Eng. Sci.
, 42
, 2094
–2106
.16.
Han
X. M.
Koelling
K. W.
Tomasko
D. L.
Lee
L. J.
2003
, “Extrusion of Polystyrene Nanocomposite Foams with Supercritical CO2
.” Poly. Eng. Sci.
, 43
, 1206
–1220
.17.
Han X. M., 2003, “Continuous Production of Microcellular Foams.” Ph. D Thesis, Ohio State University, American.
18.
Elkovitch
M. D.
Tomasko
D. L.
Lee
L. J.
1999
, “Supercritical Carbon Dioxide Assisted Blending of Polystyrene and Poly(Methyl Methyacrylate)
.” Poly. Eng. Sci.
, 39
, 2075
–2084
.19.
Kwag
C.
Manke
C. W.
Gulari
E.
1999
, “Rheology of Molten Polystyrene with Dissolved Supercritical and Near-Critical Gases
.” J. Polym. Sci., Part B: Polym. Phys.
, 37
(19
), 2771
–2781
.
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.