Theoretical and empirical models for the gas void fraction (α) are reviewed. Simple rules are developed for obtaining rational bounds for the void fraction in two-phase flow. The lower bound is based on the separate cylinders formulation for turbulent-turbulent flow that uses the Blasius equation to predict the Fanning friction factor. The upper bound is based on the Butterworth relationship that represents well the Lockhart-Martinelli correlation. These two bounds are reversed in the case of liquid fraction (1−α). The bounds models are verified using published experimental data of void fraction versus mass quality at constant mass flow rate. The published data include different working fluids such as R-12 and R-22 at different pipe diameters, different pressures, and different mass flow rates. It is shown that the published data can be well bounded for a wide range of mass qualities, pipe diameters, pressures and mass flow rates. Further comparisons are made using the published experimental data of void fraction (α) and liquid fraction (1−α) versus the Lockhart-Martinelli parameter (X), for different working fluids such as R-12, R-22 and air-water mixtures.

1.
Lockhart
 
R. W.
, and
Martinelli
 
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chemical Engineering Progress Symposium Series
,
45
(
1
), pp.
39
48
.
2.
Martinelli
 
R. C.
, and
Nelson
 
D. B.
,
1948
, “
Prediction of Pressure Drop during Forced-Circulation Boiling of Water
,”
Trans. ASME
,
70
(
6
), pp.
695
702
.
3.
Zivi
 
S. M.
,
1964
, “
Estimation of Steady-State Void Fraction by Means of the Principle of Minimum Energy Production
,”
J. Heat Transfer
,
86
, pp.
247
252
.
4.
Wallis, G. B., 1969, One-Dimensional Two-Phase Flow, McGraw-Hill Book Company, New York.
5.
Rouhani
 
S. Z.
, and
Axelsson
 
E.
,
1970
, “
Calculation of Volume Void Fraction in the Subcooled and Quality Region
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
6.
Taitel
 
Y.
, and
Dukler
 
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
7.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere Pub. Corp., Washington, D.C, Chap. 10, pp. 422–423.
8.
Turner, J. M., 1966, “Annular Two-Phase Flow,” Ph.D. Thesis, Dartmouth College, Hanover, NH.
9.
Blasius, H., 1913, “Das A¨hnlichkeitsgesetz bei Reibungsvorga¨ngen in Flu¨ssikeiten,” Forsch. Gebiete Ingenieurw., 131.
10.
Butterworth
 
D.
,
1975
, “
A Comparison of Some Void Fraction Relationships for Gas-Liquid Flow
,”
Int. J. Multiphase Flow
,
1
(
6
), pp.
845
850
.
11.
Armand, A. A., 1946, “Resistance to Two-Phase Flow in Horizontal Tubes (in Russian),” Izv. VTI, 15 (1), pp. 16–23. English translation, NLL M882, Boston Spa, Yorks: National Lending Library.
12.
Massena, W. A., 1960, “Steam-Water Critical Flow Using the Separated Flow Model,” Hanford Atomic Products Operation Report, HW-65739.
13.
Baker
 
O.
,
1954
, “
Simultaneous Flow of Oil and Gas
,”
Oil Gas J.
,
53
, pp.
185
195
.
14.
Bankoff
 
S. G.
,
1960
, “
A Variable Density Single-Fluid Model for Two-Phase Flow with Particular Reference to Steam-Water Flow
,”
J. Heat Transfer
,
82
(
4
), pp.
265
272
.
15.
Hughmark
 
G. A.
,
1962
, “
Hold up in Gas-Liquid Flow
,”
Chemical Engineering Progress Symposium Series
,
58
(
4
), pp.
62
65
.
16.
Hewitt, G. F., King, R. D., and Lovegrove, P. C., 1962, “Techniques for Liquid Film and Pressure Drop Studies in Annular Two-Phase Flow,” AERE-R3921, London, UK, Harwell, Atomic Energy Research Establishment.
17.
Marchaterre, J. F., Petrick, M., Lottes, P. A., Weatherhead, R. J., and Flinn, W. S., 1960, “Natural and Forced-Circulation Boiling Studies,” ANL-5735, Illinois, Chicago, Argonne National Laboratory.
18.
Bae, S., Maulbetsch, J. S., and Rohsenow, W. M., 1969, “Refrigerant Forced-Convecture Condensation inside Horizontal Tubes,” DSR 79760-64, ASHRAE RP 63, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
19.
Soliman
 
M.
,
Schuster
 
J. R.
, and
Berenson
 
P. J.
,
1968
, “
A General Heat Transfer Correlation for Annular Flow Condensation
,”
J. Heat Transfer
,
90
, pp.
267
276
.
20.
Souza, A. L., Chato, J. C., Wattelet, J. P., and Christoffersen, B. R., 1993, “Pressure Drop During Two-Phase Flow of Pure Refrigerants and Refrigerant-Oil Mixtures in Horizontal Smooth Tubes,” ASME Heat Transfer With Alternate Refrigerants, HTD, Vol. 243, pp. 35–41, Atlanta, Georgia, U. S. A.
21.
Souza, A. L., and Pimenta, M. M., 1995, “Prediction of Pressure Drop During Horizontal Two-Phase Flow of Pure and Mixed Refrigerants,” ASME Conference Cavitation and Multi-Phase Flow, HTD, Vol. 210, pp. 161–171, South Carolina, U. S. A.
22.
Thom
 
J. R. S.
,
1964
, “
Prediction of Pressure Drop during Forced Circulation Boiling of Water
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
709
724
.
23.
Baroczy
 
C. J.
,
1965
, “
Correlation of Liquid Fraction in Two-Phase Flow with Applications to Liquid Metals
,”
Chemical Engineering Progress Symposium Series
,
61
(), pp.
179
191
.
24.
Zuber, N., Staub, F. W., Bijwaard, G., and Kroeger, P., 1967, “Steady State and Transient Void Fraction in Two-Phase Flow Systems,” GEAP-5417, San Jose, California, General Electric Co.
25.
Zuber
 
N.
,
Findlay
 
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
J. Heat Transfer
,
87
, pp.
453
468
.
26.
Premoli, A., Franceso, D. Di., and Prina, A., 1970, “An Empirical Correlation for Evaluating Two-Phase Mixture Density under Adiabatic Conditions,” paper B9, European Two Phase Flow Group Meeting, Milan, Italy.
27.
Smith
 
S. L.
,
1971
, “
Void Fractions in Two -Phase Flow: A Correlation Based Upon an Equal Velocity Head Model
,”
Heat and Fluid Flow
,
1
(
1
), pp.
22
39
.
28.
Chisholm
 
D.
,
1973
, “
Void Fraction during Two-Phase Flow
,”
J. Mechanical Engineering Science
,
15
(
3
), pp.
235
236
.
29.
Nabizadeh, H., 1976, “Ubertragungsgesetze fu¨r den Dampfvolumenanteil zwischen Freon and Wasser. EIR-Wurenlingen, Vortrag auf dem R12 Kolloquium im Inst. fu¨r Verahrenstechnik der T. U. Hanover, Germany.
30.
Hart
 
J.
,
Hamersma
 
P. J.
, and
Fortuin
 
J. M. H.
,
1989
, “
Correlations Predicting Frictional Pressure Drop and Liquid Holdup during Horizontal Gas-Liquid Pipe Flow with a Small Liquid Holdup
,”
Int. J. Multiphase Flow
,
15
(
6
), pp.
947
964
.
31.
Steiner, D., 1993, “Heat Transfer to Boiling Saturated Liquids,” VDI -Warmeatlas (VDI Heat Atlas), Editor: Ingenieure, V. D., VDI-Gessellschaft Verfahrenstechnik und Chemie-in-genieurwesen (GCV), Translator: Fullarton, J. W., Dusseldorf, Germany.
32.
Kattan
 
N.
,
Thome
 
J. R.
, and
Favrat
 
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 3: Development of a New Heat Transfer Model Based on Flow Patterns
,”
J. Heat Transfer
,
120
(
1
), pp.
156
165
.
33.
El Hajal
 
J.
,
Thome
 
J. R.
, and
Cavallini
 
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 1: Two -Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.
34.
Thome
 
J. R.
,
El Hajal
 
J.
, and
Cavallini
 
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3365
3387
.
35.
Hashizume
 
K.
,
1983
, “
Flow Pattern, Void Fraction and Pressure Drop of Refrigerant Two-Phase Flow in a Horizontal Pipe. Part I: Experimental Data
,”
Int. J. Multiphase Flow
,
9
(
4
), pp.
399
410
.
36.
Wojtan
 
L.
,
Ursenbacher
 
T.
, and
Thome
 
J. R.
,
2004
, “
Interfacial Measurements in Stratified Types of Flow. Part II: Measurements for R-22 and R-410A
,”
Int. J. Multiphase Flow
,
30
(
2
), pp.
125
137
.
37.
Bergelin, O. P. and Gazeley, C. Jr., 1949, “Cocurrent Gas - Liquid Flow. I. Flow in Horizontal Tubes,” ASME Proc. Heat Transfer and Fluid Mech. Inst., NY, pp. 5–18.
This content is only available via PDF.
You do not currently have access to this content.