In the development of liquid metal Rankine cycle system, experiments using liquid metals generally cannot be conducted on the International Space Station (ISS) or the space shuttles due to a number of issues including safety. Some other fluids must be used to simulate potassium flows in a Rankine cycle. In this paper an analysis for the simulation using surrogate fluids is made. The results of the analysis indicate that single-phase liquid metal flows, either liquid or vapor, can be simulated using surrogate fluids both in ground and space experiments. For two-phase liquid-metal flow, a credible simulation with a surrogate fluid is currently not possible. For the problem of vapor-production efficiency in a boiler, a simulation using a surrogate fluid whose properties are similar to potassium is workable. A high concentration of copper nanoparticles in water (Cu-water nanofluid) is considered a potential possibility for a fluid to simulate liquid-metal turbulent flow and the boiling process. In the final stage of developing the liquid-metal Rankine-cycle system, experimental tests in a subscale liquid-metal system are still indispensable.

1.
Mason, L. S., 2002, “Power technology options for nuclear electric propulsion,” Proceedings of the 37th Intersociety Energy Conversion Engineering Conference, IECEC-2002, Paper #20159.
2.
Bevard, B. B. and Yoder, G. L., 2003, “Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs,” Space Technology and Applications International Forum-STAIF, M. S. El-Genk, ed., pp. 629–634.
3.
Sankovic, J. M., 2003, “Strategic opportunities in multiphase flow issues related to advanced space power systems based on the Rankine cycle,” NASA white paper - Report to SWG.
4.
Lahey, Jr, R. T., and Dhir, V., 2004, “Research in support of the use of Rankine cycle energy conversion systems for space power and propulsion,” NASA/CR-2004-213142.
5.
Kreith, F., and Bohn, M. S., 1986, Principles of heat transfer, Fourth edition, Harper & Row, Publishers, New York.
6.
Dwyer, O. E., 1976, “Liquid-metal heat transfer,” Sodium-NaK engineering handbook, Vol. II, O. J. Foust, ed., Gordon and Breach, Science Publishers, Inc., New York, pp. 73–191.
7.
Rohsenow, W. M., Hartnett, J. P., and Cho, Y. I., 1998, Handbook of heat transfer, Third Edition, McGraw-Hill, New York.
8.
Vargaftik, N.,B., Vinogradov, Y. K., and Yargin, V. S., 1996, Handbook of physical properties of liquids and gases, Pure substances and mixtures, 3rd augmented and revised edition, Begell house, Inc., New York.
9.
Ho, C. Y., 1988, Properties of inorganic and organic fluids, Hemisphere Publishing Corp. New York.
10.
Ding, Y., Wen, D., and Williams, R. A., 2004, “Nanofluids for heat transfer intensification—where are we and where should we do?” Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, June 15–19, 2004, pp. 66–76.
11.
Hamilon
R. L.
, and
Crosser
O. K.
,
1962
, “
Thermal conductivity of heterogeneous two-component systems
,”
I & EC Fundamentals
,
1
, pp.
187
191
.
12.
Xuan
Y.
and
Li
Q.
,
2000
, “
Heat transfer enhancement of nanofluids
,”
Int. J. Heat and Fluid Flow
,
21
, pp.
58
64
.
13.
Eastman
J. A.
,
Phillpot
S. R.
,
Choi
S. U. S.
, and
Keblinski
P.
,
1999
, “
Thermal transport in nanofluids
,”
Annu. Rev. Mater. Res.
,
34
, pp.
219
246
.
14.
Keblinski
P.
,
Phillpot
S. R.
,
Choi
S. U. S.
,
Eastman
J. A.
,
2002
, “
Mechanisms of heat flow in suspensions of nanosized particles (nanofluids)
,”
Int. J. Heat and Mass Transfer
,
45
, pp.
855
863
.
15.
Li, Q. and Xuan, Y., 2000, “Experimental investigation on transport properties of nanofluids,” Proceedings of 5th International Symposium on Heat Transfer, Beijing, China, June 15–19, pp. 757–762.
16.
Wang
B-X.
,
Zhou
L-P.
, and
Peng
X-F.
,
2003
, “
A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
,”
Int. J. Heat Mass Transfer
46
, pp.
2665
2672
.
17.
Eastman, J. A., Choi, U. S. U., Li, S., Thompson, L. J., and Lee, S., 1997, “Enhanced thermal conductivity through the development of nanofluids,” Nanophase and Nanocomposite Materials II. MRS, Komarneni, S., Parker, J.C., Wollenberger, H.J., eds., Pittsburg, PA, pp. 3–11.
18.
Lee
S.
,
Choi
S. U. S.
,
Li
S.
, and
Eastman
J. A.
,
1999
, “
Measuring thermal conductivity of fluids containing oxide nanoparticles
,”
J. Heat Transfer
,
121
, pp.
280
289
.
19.
Das
S. K.
,
Putra
N.
,
Thiesen
P.
, and
Roetzel
W.
,
2003
, “
Temperature dependence of thermal conductivity enhancement for nanofluids
,”
J. Heat Transfer
,
125
, pp.
567
574
.
20.
Eastman
J. A.
,
Choi
S. U. S.
,
Li
S.
,
Soyez
G.
,
Thompson
L. J.
, and
Melfi
D.
,
1999
, “
Novel thermal properties of nanostructured materials
,”
J. Metastable and Nanocrystalline Materials
,
2–6
, pp.
629
634
.
21.
Brinkman
H. C.
,
1952
, “
The viscosity of concentrated suspensions and solutions
,”
J. Chem. Phys.
20
, pp.
571
571
.
22.
Peterson, J. R., 1967, “High-performance ‘once-through’ boiling of potassium in single tubes at saturation temperatures of 1500° to 1750° F,” Report NASA CR-842, NASA.
23.
Bond, J. A., Converse, G. L., 1967, “Vaporization of hightemperature potassium in forced convection at saturation temperatures of 1800-2100° F,” Report NASA CR-843, General Electric Co.
24.
Bersin, G. W., Horan, J., and Costales, D., 1964, “Forced convection boiling potassium experiments,” Report PWAC-430, Pratt & Whitney Aircraft.
25.
Judd
A. M.
,
1969
, “
Analysis of the transient boiling of liquid metals
,”
Brit. J. Appl. Phys. (J. Phys. D)
,
2
, pp.
261
274
.
26.
Shah
M. M.
,
1992
, “
A survey of experimental heat transfer data for nucleate pool boiling of liquid metals and a new correlation
,”
Int. J. Heat and Fluid Flow
,
13
, pp.
370
379
.
27.
Zeigarnik, Y. A., 1996, “Liquid-metal heat transfer,” Intl. Encyclopedia of heat & mass transfer, Hewitt, G.F., Shires, G.L., Polezhaev, Y.V., eds., CRC Press, New York, pp. 673–675.
28.
Wasan
D. T.
, and
Nikolov
A. D.
,
2003
, “
Spreading of nanofluids on solids
,”
Nature
,
423
, pp.
156
159
.
29.
Das
S. K.
,
Putra
N.
, and
Roetzel
W.
,
2003
, “
Pool boiling characteristics of nano-fluids
,”
Int. J. Heat Mass Transfer
46
, pp.
851
862
.
30.
Vassallo
P.
,
Kumar
R.
, and
Amico
S. D.
,
2004
, “
Pool boiling heat transfer experiments in silica-water nano-fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.
31.
You
S. M.
, and
Kim
J. H.
,
2003
, “
Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer
,”
Appl. Phys. Letters
,
83
, pp.
3374
3376
.
32.
Faulkner, D. J., and Shekarriz, R., 2003, “Forced convective boiling in microchannels for KW/cm2 electronic cooling,” Proceedings of 2003 ASME Summer Heat Transfer Conference, Las Vegas, Nevada, July 21–23, 2003.
This content is only available via PDF.
You do not currently have access to this content.