As the third largest plastics processing technique, blow molding is one of the fastest growing industries worldwide. In this paper, a series of simulations on the parison formation in plastics extrusion blow molding were implemented using finite element method. Then a neural network model was developed based on the numerical results. The effects of the extrusion die inclination angle, die gap, and parison length on the parison swells can be predicted using the network model. The hybrid method combining the finite element and neural network can shorten the time for the predictions drastically.
Volume Subject Area:
Fluids Engineering
1.
Rosato, D. V., Rosato, A. V., and DiMattia D. P., Eds., 2004, “Blow Molding Handbook.” (2nd Ed.); Hanser: Munic.
2.
Garcia-Rejon
A.
DiRaddo
R. W.
Ryan
M. E.
1995
, “Effect of Die Geometry and Flow Characteristics on Viscoelastic Annular Swell
.” Journal of Non-Newtonian Fluid Mechanics
, Vol. 60
, 107
–128
.3.
Tanoue
S.
Kajiwara
T.
Iemoto
Y.
Funatsu
K.
1998
, “High Weissenberg Number Simulation of an Annular Extrudate Swell Using the Differential Type Constitutive Equation
.” Polym. Eng. Sci.
, Vol. 38
, 409
–419
.4.
Laroche
D.
Kabanemi
K. K.
Pecora
L.
DiRaddo
R. W.
1999
, “Integrated Numerical Modeling of the Blow Molding Process
.” Polym. Eng. Sci.
, Vol. 39
, 1223
–1233
.5.
Otsuki
Y.
Kajiwara
T.
Funatsu
K.
1999
, “Numerical Simulations of Annular Extrudate Swell Using Various Types of Viscoelastic Models
.” Polym. Eng. Sci.
, Vol. 39
, 1969
–1981
.6.
Tanifuji
S. I.
Kikuchi
T.
Takimoto
J. I.
Koyama
K.
2000
, “Overall Numerical Simulation of Extrusion Blow Molding Process
.” Polym. Eng. Sci.
, Vol. 40
, 1878
–1893
.7.
Huang
H. X.
Liao
C. M.
2002
, “Prediction of Parison Swell during Extrusion Blow Molding Using Neural Network Method
.” Polym. Test.
, Vol. 21
, 745
–749
.8.
Huang
H. X.
Lu
S.
2005
, “Modeling Parison Formation in Extrusion Blow Molding By Neural Networks
.” J. Appl. Polym. Sci.
, Vol. 96
, 2230
–2239
.9.
Hagan
M. T.
Menhaj
M. B.
1994
, “Training Feedforward Networks with the Marquardt Algorithm
.” Neural Networks
, Vol. 5
, 989
–993
.
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.