A physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with boiling. Based on the above physical model, a total of seven unknowns with corresponding equations resulted. The liquid film thickness, the vapor pressure and the axial heat flow rate have been solved using a fourth-order Runge-Kutta method. The liquid pressure, the vapor and liquid temperatures have been solved using the finite difference method with first order accuracy. The interfacial temperature and pressure have been solved using the root finding method for every mesh point in the axial direction. In addition to the sample calculations that were used to calibrate the model, computations based on the current model were performed to generate results for comparison with Carey’s macro-scale model (Carey, 1992) and with the experimental data of Jiang et al. (2002) where three different mass flow rates of the working fluid were used in the experiment. The comparisons of pressure drops were made for 25 W, 38 W and 58 W of heating with mass flow rates of 2 ml/min, 5 ml/min and 9ml/min, respectively. In general, Carey’s model underpredicted the experimental data by Jiang et al. (2002), especially at the lower flow rates. The calculated results from the current model matched closely with those of Jiang et al. (2002). The main reason for the poor performance of Carey’s model is that it was developed for the macrosystems, where the surface tension and the Marangoni effects are not important.

1.
Blangetti
F.
,
Naushahi
M. K.
,
1980
, “
Influence of mass transfer on the momentum transfer in condensation and evaporation phenomena
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1694
1695
.
2.
Bowers
M. B.
,
Mudawar
I.
,
1994
, “
High flux boiling in low flow rate, low pressure drop mini-channel and microchannel heat sinks
,”
Int. J. Heat Mass Transfer
,
37
, pp.
321
332
.
3.
Bowers
M. B.
,
Mudawar
I.
,
1994
a, “
Two-phase electronic cooling using mini-channel and micro-channel heat sinks: Part 1-Design criteria and heat diffusion constraints
,”
J. ELECTRONIC PACKAGING
,
116
, pp.
290
297
.
4.
Bowers
M. B.
,
Mudawar
I.
,
1994
b, “
Two-phase electronic cooling using mini-channel and micro-channel heat sinks: Part 2-Flow rate and pressure drop constraints
,”
J. ELECTRONIC PACKAGING
,
116
, pp.
298
305
.
5.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena, Taylor & Francis
6.
DasGupta
S.
,
Schonberg
J. A.
,
Kim
I. Y.
,
Wayner
P. C.
,
1993
, “
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
,”
J. Colloid and Interface Science
,
157
, pp.
332
342
.
7.
DasGupta
S.
,
Kim
I. Y.
,
Wayner
P. C.
,
1994
, “
Use of the Kelvin-Clapeyron equation to model an evaporating curved microfilm
,”
J. Heat Transfer
,
116
, pp.
1007
1015
.
8.
Duncan
A. B.
,
Peterson
G. P.
,
1994
, “
A review of microscale heat transfer
,”
Appl. Mech. Rev.
,
47
, pp.
397
428
.
9.
Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, Washington, DC.
10.
Gad-el-Hak
M.
,
1999
, “
The fluid mechanics of microdevices-The freeman scholar lecture
,”
J. Fluids Engineering
,
121
, pp.
5
31
.
11.
Gersey
C. O.
,
Mudawar
I.
,
1993
, “
Nucleate boiling and critical heat flux from protruded chip arrays during flow boiling
,”
J. Electronic Packaging
,
115
, pp.
78
88
.
12.
Ho
C. M.
,
Tai
Y. C.
,
1998
, “
Micro-electro-mechanical systems(MEMS) and fluid flows
,”
Ann. Rev. Fluid Mech.
,
30
, pp.
579
612
.
13.
Jiang
L.
,
Mikkelsen
J.
,
Koo
J. M.
,
Huber
D.
,
Yao
D.
,
Zhang
L.
,
Zhou
P.
,
Maveety
J. G.
,
Prasher
R.
,
Santiago
J. G.
,
Kenny
T. W.
,
Kenny
T. W.
,
Goodson
K. E.
,
2002
, “
Closedloop electroosmotic microchannel cooling system for VLSI circuits
,”
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES
,
25
, pp.
347
355
.
14.
Khrustalev
D.
,
Faghri
A.
,
1997
, “
Thick-film phenomenon in high-heat-flux evaporation from cylindrical pores
,”
J. Heat Transfer
,
119
, pp.
272
278
.
15.
Morris, C.J., 2000, “Parameter determination for low-order models of a fixed-valve micropump,” M.S. thesis, Department of Mechanical Engineering, University of Washington.
16.
Morris, C.J.,Chung, J.Y., Rahm, P.E., Forster, F.K., 2004, “Electronic cooling system based on fixed-valve micropump networks,” Solid State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, South Carolina, June 8–10, pp. 152–155.
17.
Mudawar
I.
,
Bowers
M. B.
,
1999
, “
Ultra-high critical heat flux(CHF) for subcooled water flow boiling - I: CHF data and parametric effects for small diameter tubes
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1405
1428
.
18.
Peng
X. F.
,
Wang
B. X.
,
1993
, “
Forced convection and flow boiling heat transfer for liquid flowing through microchannels
,”
Int. J. Heat Mass Transfer
,
36
, pp.
3421
3427
.
19.
Peng
X. F.
,
Wang
B. X.
,
Peterson
G. P.
,
Ma
H. B.
,
1995
, “
Experimental investigation of heat transfer in flat plates with rectangular microchannels
,”
Int. J. Heat Mass Transfer
,
38
, pp.
127
137
.
20.
Peng
X. F.
,
Xiang
G. M.
,
Hu
H. Y.
,
Wang
B. X.
,
1998
a, “
Enhancing the critical heat flux using microchanneled surfaces
,”
J. Enhanced Heat Transfer
,
5
, pp.
165
176
.
21.
Peng
X. F.
,
Hu
H. Y.
,
Wang
B. X.
,
1998
b, “
Flow boiling through v-shape microchannels
,”
Experimental Heat Transfer
,
11
, pp.
87
100
.
22.
Peng
X. F.
,
Hu
H. Y.
,
Wang
B. X.
,
1998
c, “
Boiling nucleation during liquid flow in microchannels
,”
Int. J. Heat Mass Transfer
,
41
, pp.
101
106
.
23.
Peng
X. F.
,
Liu
D.
,
Lee
D. J.
,
Yan
Y.
,
Wang
B. X.
,
2000
, “
Cluster dynamics and fictitious boiling in microchannels
,”
Int. J. Heat Mass Transfer
,
43
, pp.
4259
4265
.
24.
Qu
W.
,
Mudawar
I.
, “
Transport phenomena in two-phase micro-channel heat sinks
,”
J. Electronic Packaging
,
126
, pp.
213
224
.
25.
Sujanani
M.
,
Wayner
P. C.
,
1992
, “
Transport processes and interfacial phenomena in an evaporating meniscus
,”
Chem. Eng. Comm.
,
118
, pp.
89
110
.
26.
Tran
T. N.
,
Wambsganss
M. W.
,
France
D. M.
,
1996
, “
Small circular- and rectangular-channel boiling with two refrigerants
,”
Int. J. Multiphase Flow
,
22
, pp.
485
498
.
27.
Tran
T. N.
,
Chyu
M. C.
,
Wambsganss
M. W.
,
France
D. M.
,
2000
, “
Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development
,”
Int. J. Multiphase Flow
,
26
, pp.
1739
1754
.
28.
Wambsganss
M. W.
,
Jendrzejczyk
J. A.
,
France
D. M.
,
1991
, “
Two-phase flow patterns and transitions in a small, horizontal, rectangular channel
,”
Int. J. Multiphase Flow
,
17
, pp.
327
342
.
29.
Wambsganss
M. W.
,
Jendrzejczyk
J. A.
,
France
D. M.
,
Obot
N. T.
,
1992
, “
Frictional pressure gradients in two-phase flow in a small horizontal rectangular channel
,”
Experimental Thermal and Fluid Science
,
5
, pp.
40
56
.
30.
Wamgsganss
M. W.
,
France
D. M.
,
Jendrzejczyk
J. A.
,
Tran
T. N.
,
1993
, “
Boiling heat transfer in a horizontal small-diameter tube
,”
J. Heat Transfer
,
115
, pp.
963
972
.
31.
Wayner
P. C.
,
Kao
Y. K.
,
LaCroix
L. V.
,
1976
, “
The interline heat-transfer coefficient of an evaporating wetting film
,”
Int. J. Heat Mass Transfer
,
19
, pp.
487
492
.
32.
Wayner
P. C.
,
1994
, “
Thermal and mechanical effects in the spreading of a liquid film due to a change in the apparent finite contact angle
,”
J. Heat Transfer
,
116
, pp.
938
945
.
33.
Wayner
P. C.
,
1997
, “
Constrained vapor bubble
,”
Microscale Thermophysical Engineering
,
1
, pp.
111
118
.
34.
Wayner
P. C.
,
1999
, “
Intermolecular forces in phasechange heat transfer: 1998 Kern Award Review
,”
AIChE Journal
,
45
, pp.
2055
2068
.
This content is only available via PDF.
You do not currently have access to this content.