Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5, 20.5 and 27.5% fiber volume fractions, respectively. Voids throughout these disk-shaped composites are evaluated by microscopic image analysis of samples obtained along the radius. Each identified void’s equivalent radius, area, and shape are determined at 200x magnification. Number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5 to 9.5 voids/mm2 as fiber content is increased from 13.5 to 27.5% fiber content. Similarly, void volume fraction decreased from 3.1 to 2.5%. Average void size is observed to remain similar at 53 to 55 μm when the fiber content is increased from 13.5 to 27.5%. Increasing fiber volume fraction from 13.5 to 27.5% lowers the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move towards the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding, but generally to liquid composite molding processes.

1.
Abraham
D.
, and
Mcllhagger
R.
,
1998
, “
Investigation into Various Methods of Liquid Injection to Achieve Mouldings with Minimum Void Content and Full Wet Out
,”
Composites Part A
,
29A
, pp.
533
539
.
2.
Abraham
D.
,
Matthews
S.
, and
Mcllhagger
R.
,
1998
, “
A Comparison of Physical Properties of Glass Fiber Epoxy Composites Produced by Wet Lay-up with Autoclave Consolidation and Resin Transfer Moulding
,”
Composites Part A
,
29
, pp.
795
801
.
3.
Johnson, C. F., 1990, “Composite Materials Technology- Process and Properties,” Hanser Publisher, New York, Ch. 5.
4.
Elber
G.
,
1993
, “
Resin-transfer molding: Tips for successful application
,”
Advanced Composites
,
8
, pp.
26
29
.
5.
Judd
N. C. W.
and
Wright
W. W.
,
1978
, “
Voids and their Effects on the Mechanical Properties of Composites - an Appraisal
,”
SAMPE Journal
,
14
, pp.
10
14
.
6.
Olivero
K. A.
,
Barraza
H. J.
,
O’Rear
E. A.
, and
Altan
M. C.
,
2002
, “
Effect of Injection Rate and Post-Fill Cure Pressure on resin Transfer Molded disks
,”
Journal of Composite Materials
,
36
, pp.
2011
2028
.
7.
Pearce
N.
,
Guild
F.
, and
Summerscales
J.
,
1998
, “
A Study of the Effects of Convergent Flow Fronts on the Properties of Fiber Reinforced Composites Produced by Resin Transfer Molding
,”
Composites Part A
,
29
, pp.
141
152
.
8.
Wisnom
M. R.
,
Reynolds
T.
, and
Gwilliam
N.
,
1996
, “
Reduction in Interlaminar Shear Strength by Discrete and Distributed voids
,”
Composites Science and Technology
,
56
, pp.
93
101
.
9.
Bowles
K. J.
, and
Frimpong
S.
,
1992
, “
Void Effects on the Interlaminar Shear-Strength of Unidirectional Graphite-Fiber-Reinforced Composites
,”
Journal of Composite Materials
,
26
, pp.
1487
1509
.
10.
Harper
B. D.
,
Staab
G. H.
, and
Chen
R. S.
,
1987
, “
A Note on the Effect of Voids Upon the Hygral and Mechanical Properties of AS4/3502 Graphite/Epoxy
,”
Journal of Composite Materials
,
21
, pp.
280
289
.
11.
Mahale
A. D.
,
Prud’Homme
R. K.
, and
Rebenfeld
L.
,
1992
, “
Quantitative Measurement of Voids Formed During Liquid Impregnation of Nonwoven Multifilament Glass networks Using an Optical Visualization Technique
,”
Polymer Engineering and Science
,
32
, pp.
319
326
.
12.
Patel
N.
and
Lee
L. J.
,
1995
, “
Effect of Fiber Mat Architecture on Void Formation and Removal in Liquid Composite Molding
,”
Polymer Composites
,
16
(
5
), pp.
386
399
.
13.
Patel
N.
,
Rohatgi
V.
, and
Lee
J. L.
,
1995
, “
Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Unidirectional Stitched Fiberglass Mat
,”
Polymer Engineering and Science
,
35
, pp.
837
851
.
14.
Patel
N.
and
Lee
J. L.
,
1996
, “
Modeling of Void Formation and Removal in Liquid Composite Molding. Part I: Wettability Analysis
,”
Polymer Composites
,
17
, pp.
96
103
.
15.
Rohatgi
V.
,
Patel
N.
, and
Lee
J. L.
,
1996
, “
Experimental Investigation of Flow Induced Microvoids During Impregnation of Unidirectional Stitched Fiberglass Mat
,”
Polymer Composites
,
17
, pp.
161
170
.
16.
Lundstro¨m
T. S.
, and
Gebart
B. R.
,
1994
, “
Influence from Process Parameters on Void Formation in Resin Transfer Molding
,”
Polymer Composites
,
15
, pp.
25
33
.
17.
Lee
C.-L.
, and
Wei
K.-H.
,
2000
, “
Resin Transfer Molding Process (RTM) of a High Performance Epoxy Resin. II: Effects of Process Variables on the Physical, Static and Dynamic Mechanical Behavior
,”
Polymer Engineering Science
,
40
, pp.
935
943
.
18.
H. P. G. Darcy, 1856, Les Fontaines Publiques de la Ville de Dijon, Delmont, Paris, 306.
19.
Olivero
K. A.
,
Hamidi
Y. K.
,
Aktas
L.
, and
Altan
M. C.
,
2004
, “
Effect of Preform Thickness and Volume Fraction on Injection Pressure and Mechanical Properties of Resin Transfer Molded Composites
,”
Journal of Composite Materials
,
38
, pp.
937
958
.
20.
Han
K.
,
Lee
L. J.
,
Nakamura
S.
,
Shafi
A.
, and
White
D.
,
1996
, “
Dry Spot Formation and Changes in Liquid Composite Molding: II Modeling and Simulation
,”
Journal of Composite Materials
,
30
, pp.
1475
1493
.
21.
Kang
M. K.
,
Lee
W. I.
, and
Hahn
H. T.
,
2000
, “
Formation of Microvoids During Resin-Transfer Molding Process
,”
Composites Science and Technology
,
60
, pp.
2427
2434
.
22.
Hamidi
Y. K.
,
Aktas
L.
, and
Altan
M. C.
,
2005
, “
Three-Dimensional Features of Void Morphology in Resin Transfer Molded Composites
,”
Composites Science and Technology
,
65
, pp.
1306
1320
.
23.
Hamidi
Y. K.
,
Aktas
L.
, and
Altan
M. C.
,
2004
, “
Formation of Microscopic Voids in Resin Transfer Molded Composites
,”
Journal of Engineering Materials and Technology
,
126
, pp.
420
426
.
24.
Barraza
H. J.
,
Hamidi
Y. K.
,
Aktas
L.
,
O’Rear
E. A.
, and
Altan
M. C.
,
2003
, “
Porosity Reduction in the High-Speed Processing of Glass Fiber Composites by Resin Transfer Molding (RTM)
,”
Journal of Composite Materials
,
38
, pp.
195
226
.
25.
Hamidi
Y. K.
and
Altan
M. C.
,
2003
, “
Spatial variation of Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites
,”
Journal of Material Science Letters
,
22
, pp.
1813
1816
.
26.
Breard
J.
,
Saouab
A.
, and
Bouquet
G.
,
2003
, “
Numerical Simulation of Void Formation in LCM
,”
Composites Part A
,
34
, pp.
517
523
.
27.
Binetruy
C.
,
Hilaire
B.
, and
Pabiot
J.
,
1998
, “
Tow Impregnation Model and Void Formation Mechanisms During RTM
,”
Journal of Composite Materials
,
32
, pp.
223
245
.
28.
Chang
C.-Y.
, and
Hourng
L.-W.
,
1998
, “
Study on Void Formation in Resin Transfer Molding
,”
Polymer Engineering and Science
,
38
, pp.
809
818
.
29.
Thomas
M. M.
,
Joseph
B.
, and
Kardos
J. L.
,
1997
, “
Experimental Characterization of Autoclave-Cured Glass-Epoxy Composite Laminates: Cure Cycle Effects Upon Thickness, Void Content and Related Phenomena
,”
Polymer Composites
,
18
, pp.
283
299
.
30.
Chan
A. W.
, and
Morgan
R. J.
,
1992
, “
Modeling Preform Impregnation and Void Formation in Resin Transfer Molding of Unidirectional Composites
,”
Polymer Composites
,
23
, pp.
48
52
.
31.
Lundstrom
T. S.
,
Gebart
B. R.
, and
Lundemo
C. Y.
,
1993
, “
Void Formation in RTM
,”
Journal of Reinforced Plastics and Composites
,
12
, pp.
1339
1349
.
32.
Rajulu
A. V.
,
Chary
K. N.
,
Reddy
G. R.
, and
Meng
Y. Z.
,
2004
, “
Void Content, Density and Weight Reduction Studies on Short Bamboo Fiber-Epoxy Composites
,”
Journal of Reinforced Plastics and Composites
,
23
, pp.
127
130
.
33.
Ghiorse, S. R., 1991, “A Comparison of Void Measurement Methods for Carbon/Epoxy Composites,” U. S. Army Materials Technology Laboratory, Report MTL TR 91-13.
34.
Santulli
C.
,
Garcia Gil
R.
,
Long
A. C.
, and
Clifford
M. J.
,
2002
, “
Void Content Measurements in Thermoplastic Composite Materials through Image Analysis from Optical Micrographs
,”
Science and Engineering of Composite Materials
,
10
, pp.
77
90
.
35.
Harper
B. D.
,
Staab
G. H.
, and
Chen
R. S.
,
1987
, “
A Note on the Effect of Voids Upon the Hygral and Mechanical Properties of AS4/3502 Graphite/Epoxy
,”
Journal of Composite Materials
,
21
, pp.
280
289
.
36.
Shih C-H., 2000, “Liquid Composite Molding of Tackified Fiber Reinforcement: Preforming and Void Removal,” PhD Thesis, Ohio State University, Department of Chemical Engineering.
37.
Howe, C. A., Paton, R. J., and Goodwin, A. A., 1997, “A Comparison Between Voids in RTM and Prepreg Carbon/Epoxy Laminates,” Proceedings of ICCM-11, Edited by M. L. Scott, Australian Composite Structures Society, Vol. IV, pp. 46–51.
38.
Goodwin, A. A., Howe, C. A., and Paton, R. J., 1997, “The Role of Voids in Reducing the Interlaminar Shear Strength in RTM Laminates,” Proceedings of ICCM-11, Edited by M. L. Scott, Australian Composite Structures Society, Vol. IV, pp. 11–19.
This content is only available via PDF.
You do not currently have access to this content.