The possible existence of slip of liquids in close proximity to a smooth surface is studied experimentally via the dynamics of small particles suspended in a shear flow. Sub-micron fluorescent particles suspended in water are imaged and analyzed using Total Internal Reflection Velocimetry (TIRV). For water flowing over a hydrophilic surface, the measurements are in agreement with previous experiments and indicate that slip, if present, is minimal at low shear rates, but increases slightly as the shear rate increases. Furthermore, surface hydrophobicity can be attributed for additional shear-rate dependent boundary slip. Issues associated with the experimental technique and the interpretation of results are also discussed.

1.
Schnell
E.
,
1956
. “
Slippage of water over nonwettable surfaces
.”
Journal of Applied Physics
,
27
, pp.
1149
1152
.
2.
Watanabe
K.
,
Yanuar
, and
Mizunuma
H.
,
1998
. “
Slip of newtonian fluids at solid boundary
.”
JSME International Journal
,
41
, pp.
525
529
.
3.
Zhu
Y.
, and
Granick
S.
,
2001
. “
Rate-dependent slip of newtonian liquid at smooth surfaces
.”
Physical Review Letters
,
87
, p.
096105
096105
.
4.
Tretheway
D. C.
, and
Meinhart
C. D.
,
2002
. “
Apparent fluid slip at hydrophobic microchannel walls
.”
Physics of Fluids
,
14
, pp.
L9–L12
L9–L12
.
5.
Pit
R.
,
Hervet
H.
, and
Leger
L.
,
2000
. “
Direct experimental evidence of slip in hexadecane: solid interface
.”
Physical Review Letters
,
85
, pp.
980
983
.
6.
Lumma
D.
,
Best
A.
,
Gansen
A.
,
Feuillebois
F.
,
Radler
J. O.
, and
Vinogradova
O. I.
,
2003
. “
Flow profile near a wall measured by double-focus fluorescence crosscorrelation
.”
Physical Review E
,
67
, p.
056313
056313
.
7.
Joseph
P.
, and
Tabeling
P.
,
2005
. “
Direct measurement of the apparent slip length
.”
Physical Review E
,
71
, p.
035303(R)
035303(R)
.
8.
Choi
C.-H.
,
Westin
J. A.
, and
Breuer
K. S.
,
2003
. “
Apparent slip flows in hydrophilic and hydrophobic microchannels
.”
Physics of Fluids
,
15
, pp.
2897
2902
.
9.
Zhu
Y.
, and
Granick
S.
,
2002
. “
Limites of the hydrodynamic no-slip boundary condition
.”
Physical Review Letters
,
88
, p.
106102
106102
.
10.
Cottin-Bizonne
C.
,
Cross
B.
,
Steinberger
A.
, and
Charlaiz
E.
,
2005
. “
Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts
.”
Physical Review Letters
,
94
, p.
056102
056102
.
11.
Neto
C.
,
Craig
V. S. J.
, and
Williams
D. R. M.
,
2003
. “
Evidence of shear-dependent boundary slip in newtonian liquids
.”
The European Physical Journal E
,
12
, pp.
S71–S74
S71–S74
.
12.
Thompson
P. A.
, and
Troian
S. M.
,
1997
. “
A general boundary condition for liquid flow at solid surfaces
.”
Nature
,
389
, pp.
360
362
.
13.
Barrat
J.-L.
, and
Bocquet
L.
,
1999
. “
Large slip effect at a nonwetting fluid-solid interface
.”
Physical Review Letters
,
82
, pp.
4671
4674
.
14.
Cieplak
M.
,
Koplik
J.
, and
Banavar
J. R.
,
2001
. “
Boundary conditions at a fluid-solid surface
.”
Physical Review Letters
,
86
, pp.
803
806
.
15.
Cottin-Bizonne
C.
,
Barrat
J.-L.
,
Bocquet
L.
, and
Charlaiz
E.
,
2005
. “
Low-friction flows of liquid at nanopattened interfaces
.”
Nature Materials
,
2
, pp.
237
240
.
16.
Galea
T. M.
, and
Attard
P.
,
2004
. “
Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow
.”
Langmuir
,
20
, pp.
3477
3482
.
17.
Nagayama
G.
, and
Cheng
P.
,
2004
. “
Effects of interface wettability on microscale flow by molecular dynamics simulation
.”
International Journal of Heat and Mass Transfer
,
47
, pp.
501
513
.
18.
Lauga, E., Brenner, M. P., and Stone, H. A., 2005. The noslip boundary condition: a review. To appear in Handbook of Experimental Fluid Dynamics. Springer.
19.
Jin
S.
,
Huang
P.
,
Park
J.
,
Yoo
J. Y.
, and
Breuer
K. S.
,
2004
. “
Near-surface velocimetry using evanescent wave illumination
.”
Experiments in Fluids
,
37
, pp.
825
833
.
20.
Zettner
C. M.
, and
Yoda
M.
,
2003
. “
Particle velocity field measurements in a near-wall flow using evanescent wave illumination
.”
Experiments in Fluids
,
34
, pp.
115
121
.
21.
Axelrod, D., 1989. “Total internal reflection fluorescence microscopy.” In Methods in Cell Biology, Vol. 30. Academic Press, Inc., ch. 9, pp. 245–270.
22.
Hosoda
M.
,
Sakai
K.
, and
Takagi
K.
,
1998
. “
Measurement of anisotropic brownian motion near an interface by evanescent light-scattering spectroscopy
.”
Physical Review E
,
58
, pp.
6275
6280
.
23.
Kihm
K. D.
,
Banerjee
A.
,
Choi
C. K.
, and
Takagi
T.
,
2004
. “
Near-wall hindered brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-d r-tirfm)
.”
Experiments in Fluids
,
37
, pp.
811
824
.
24.
Sadr
R.
,
Li
H.
, and
Yoda
M.
,
2005
. “
Impact of hindered brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination
.”
Experiments in Fluids
,
38
, pp.
90
98
.
25.
Chaoui
M.
, and
Feuillebois
F.
,
2003
. “
Creeping flow around a sphere in a shear flow close to a wall
.”
Quarterly Journal of Mechanics and Applied Mathematics
,
56
, pp.
381
410
.
26.
Goldman
A. J.
,
Cox
R. G.
, and
Brenner
H.
,
1967
. “
Slow viscous motion of a sphere parallel to a plane wall - ii: Couette flow
.”
Chemical Engineering Science
,
22
, pp.
653
660
.
27.
Pierres
A.
,
Benoliel
A.-M.
,
Zhu
C.
, and
Bongrand
P.
,
2001
. “
Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules
.”
Biophysical Journal
,
81
, pp.
25
42
.
28.
Meinhart
C. D.
, and
Wereley
S. T.
,
2003
. “
The theory of diffraction-limited resolution in microparticles image velocimetry
.”
Measurement Science and Technology
,
14
, pp.
1047
1053
.
29.
Duffy
D. C.
,
McDonald
J. C.
,
Schueller
O. J. A.
, and
Whitesides
G. M.
,
1998
. “
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
.”
Analytical Chemistry
,
70
, pp.
4974
4984
.
30.
Lauga
E.
, and
Brenner
M. P.
,
2004
. “
Dynamic mechanisms for apparent slip on hydrophobic surfaces
.”
Physical Review E
,
70
, p.
026311
026311
.
31.
Zhang
X. H.
,
Zhang
X. D.
,
Lou
S. T.
,
Zhang
Z. X.
,
Sun
J. L.
, and
Hu
J.
,
2004
. “
Degassing and temperature effects on the formation of nanobubbles at the mica/water interface
.”
Langmuir
,
20
, pp.
3813
3815
.
32.
Goldman
A. J.
,
Cox
R. G.
, and
Brenner
H.
,
1967
. “
Slow viscous motion of a sphere parallel to a plane wall - i: motion through a quiescent fluid
.”
Chemical Engineering Science
,
22
, pp.
637
651
.
33.
Cheezum
M. K.
,
Walker
W. F.
, and
Guilford
W. H.
,
2001
. “
Quantitative comparison of algorithms for tracking single fluorescent particles
.”
Biophysical Journal
,
81
, pp.
2378
2388
.
34.
Lauga
E.
,
2004
. “
Apparent slip due to the motion of suspended particles in flows of electrolyte solutions
.”
Langmuir
,
20
, pp.
8924
8930
.
35.
Flicker
S. G.
,
Tipa
J. L.
, and
Bike
S. G.
,
1993
. “
Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy
.”
Journal of Colloid and Interface Science
,
158
, pp.
317
325
.
This content is only available via PDF.
You do not currently have access to this content.