The possible existence of slip of liquids in close proximity to a smooth surface is studied experimentally via the dynamics of small particles suspended in a shear flow. Sub-micron fluorescent particles suspended in water are imaged and analyzed using Total Internal Reflection Velocimetry (TIRV). For water flowing over a hydrophilic surface, the measurements are in agreement with previous experiments and indicate that slip, if present, is minimal at low shear rates, but increases slightly as the shear rate increases. Furthermore, surface hydrophobicity can be attributed for additional shear-rate dependent boundary slip. Issues associated with the experimental technique and the interpretation of results are also discussed.
Volume Subject Area:
Fluids Engineering
1.
Schnell
E.
1956
. “Slippage of water over nonwettable surfaces
.” Journal of Applied Physics
, 27
, pp. 1149
–1152
.2.
Watanabe
K.
Yanuar
Mizunuma
H.
1998
. “Slip of newtonian fluids at solid boundary
.” JSME International Journal
, 41
, pp. 525
–529
.3.
Zhu
Y.
Granick
S.
2001
. “Rate-dependent slip of newtonian liquid at smooth surfaces
.” Physical Review Letters
, 87
, p. 096105
096105
.4.
Tretheway
D. C.
Meinhart
C. D.
2002
. “Apparent fluid slip at hydrophobic microchannel walls
.” Physics of Fluids
, 14
, pp. L9–L12
L9–L12
.5.
Pit
R.
Hervet
H.
Leger
L.
2000
. “Direct experimental evidence of slip in hexadecane: solid interface
.” Physical Review Letters
, 85
, pp. 980
–983
.6.
Lumma
D.
Best
A.
Gansen
A.
Feuillebois
F.
Radler
J. O.
Vinogradova
O. I.
2003
. “Flow profile near a wall measured by double-focus fluorescence crosscorrelation
.” Physical Review E
, 67
, p. 056313
056313
.7.
Joseph
P.
Tabeling
P.
2005
. “Direct measurement of the apparent slip length
.” Physical Review E
, 71
, p. 035303(R)
035303(R)
.8.
Choi
C.-H.
Westin
J. A.
Breuer
K. S.
2003
. “Apparent slip flows in hydrophilic and hydrophobic microchannels
.” Physics of Fluids
, 15
, pp. 2897
–2902
.9.
Zhu
Y.
Granick
S.
2002
. “Limites of the hydrodynamic no-slip boundary condition
.” Physical Review Letters
, 88
, p. 106102
106102
.10.
Cottin-Bizonne
C.
Cross
B.
Steinberger
A.
Charlaiz
E.
2005
. “Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts
.” Physical Review Letters
, 94
, p. 056102
056102
.11.
Neto
C.
Craig
V. S. J.
Williams
D. R. M.
2003
. “Evidence of shear-dependent boundary slip in newtonian liquids
.” The European Physical Journal E
, 12
, pp. S71–S74
S71–S74
.12.
Thompson
P. A.
Troian
S. M.
1997
. “A general boundary condition for liquid flow at solid surfaces
.” Nature
, 389
, pp. 360
–362
.13.
Barrat
J.-L.
Bocquet
L.
1999
. “Large slip effect at a nonwetting fluid-solid interface
.” Physical Review Letters
, 82
, pp. 4671
–4674
.14.
Cieplak
M.
Koplik
J.
Banavar
J. R.
2001
. “Boundary conditions at a fluid-solid surface
.” Physical Review Letters
, 86
, pp. 803
–806
.15.
Cottin-Bizonne
C.
Barrat
J.-L.
Bocquet
L.
Charlaiz
E.
2005
. “Low-friction flows of liquid at nanopattened interfaces
.” Nature Materials
, 2
, pp. 237
–240
.16.
Galea
T. M.
Attard
P.
2004
. “Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow
.” Langmuir
, 20
, pp. 3477
–3482
.17.
Nagayama
G.
Cheng
P.
2004
. “Effects of interface wettability on microscale flow by molecular dynamics simulation
.” International Journal of Heat and Mass Transfer
, 47
, pp. 501
–513
.18.
Lauga, E., Brenner, M. P., and Stone, H. A., 2005. The noslip boundary condition: a review. To appear in Handbook of Experimental Fluid Dynamics. Springer.
19.
Jin
S.
Huang
P.
Park
J.
Yoo
J. Y.
Breuer
K. S.
2004
. “Near-surface velocimetry using evanescent wave illumination
.” Experiments in Fluids
, 37
, pp. 825
–833
.20.
Zettner
C. M.
Yoda
M.
2003
. “Particle velocity field measurements in a near-wall flow using evanescent wave illumination
.” Experiments in Fluids
, 34
, pp. 115
–121
.21.
Axelrod, D., 1989. “Total internal reflection fluorescence microscopy.” In Methods in Cell Biology, Vol. 30. Academic Press, Inc., ch. 9, pp. 245–270.
22.
Hosoda
M.
Sakai
K.
Takagi
K.
1998
. “Measurement of anisotropic brownian motion near an interface by evanescent light-scattering spectroscopy
.” Physical Review E
, 58
, pp. 6275
–6280
.23.
Kihm
K. D.
Banerjee
A.
Choi
C. K.
Takagi
T.
2004
. “Near-wall hindered brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-d r-tirfm)
.” Experiments in Fluids
, 37
, pp. 811
–824
.24.
Sadr
R.
Li
H.
Yoda
M.
2005
. “Impact of hindered brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination
.” Experiments in Fluids
, 38
, pp. 90
–98
.25.
Chaoui
M.
Feuillebois
F.
2003
. “Creeping flow around a sphere in a shear flow close to a wall
.” Quarterly Journal of Mechanics and Applied Mathematics
, 56
, pp. 381
–410
.26.
Goldman
A. J.
Cox
R. G.
Brenner
H.
1967
. “Slow viscous motion of a sphere parallel to a plane wall - ii: Couette flow
.” Chemical Engineering Science
, 22
, pp. 653
–660
.27.
Pierres
A.
Benoliel
A.-M.
Zhu
C.
Bongrand
P.
2001
. “Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules
.” Biophysical Journal
, 81
, pp. 25
–42
.28.
Meinhart
C. D.
Wereley
S. T.
2003
. “The theory of diffraction-limited resolution in microparticles image velocimetry
.” Measurement Science and Technology
, 14
, pp. 1047
–1053
.29.
Duffy
D. C.
McDonald
J. C.
Schueller
O. J. A.
Whitesides
G. M.
1998
. “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
.” Analytical Chemistry
, 70
, pp. 4974
–4984
.30.
Lauga
E.
Brenner
M. P.
2004
. “Dynamic mechanisms for apparent slip on hydrophobic surfaces
.” Physical Review E
, 70
, p. 026311
026311
.31.
Zhang
X. H.
Zhang
X. D.
Lou
S. T.
Zhang
Z. X.
Sun
J. L.
Hu
J.
2004
. “Degassing and temperature effects on the formation of nanobubbles at the mica/water interface
.” Langmuir
, 20
, pp. 3813
–3815
.32.
Goldman
A. J.
Cox
R. G.
Brenner
H.
1967
. “Slow viscous motion of a sphere parallel to a plane wall - i: motion through a quiescent fluid
.” Chemical Engineering Science
, 22
, pp. 637
–651
.33.
Cheezum
M. K.
Walker
W. F.
Guilford
W. H.
2001
. “Quantitative comparison of algorithms for tracking single fluorescent particles
.” Biophysical Journal
, 81
, pp. 2378
–2388
.34.
Lauga
E.
2004
. “Apparent slip due to the motion of suspended particles in flows of electrolyte solutions
.” Langmuir
, 20
, pp. 8924
–8930
.35.
Flicker
S. G.
Tipa
J. L.
Bike
S. G.
1993
. “Quantifying double-layer repulsion between a colloidal sphere and a glass plate using total internal reflection microscopy
.” Journal of Colloid and Interface Science
, 158
, pp. 317
–325
.
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.