Spatial oscillations have been observed after self-propagating high temperature synthesis (SHS) of multilayer bi-metallic foils. These oscillations have been correlated with periodic variations in the flame front velocity. Previous researchers have reported oscillation for which the direction of the spatial oscillations coincides with the velocity vector of the flame front. In this study, we find another mechanism for creation of spatial oscillations. Experiments on Ni/Al multilayer foils show oscillations that lie normal to the propagation direction of the flame front. We observe that the effect is consistent with microstructure formation characteristic of directional solidification. The results contribute to increased understanding of SHS combustion mechanisms in thin Ni/Al films, in particular that the combustion temperature exceeds the melting point of all reactants and reaction products, and that the mechanism for formation of reaction products is solidification from a fully molten zone. Previous results from the literature have been inconclusive on these points.

1.
Wang
J.
,
Besnoin
E.
,
Duckham
A.
,
Spey
S. J.
,
Reiss
M. E.
,
Knio
O. M.
,
Powers
M.
,
Whitener
M.
, and
Weihs
T. P.
,
2003
, “
Room-temperature Soldering with Nanostructured Foils
,”
Applied Physics Letters
, v.
83
, pp.
3987
3989
.
2.
Swiston
A. J.
,
Hufnagel
T. C.
, and
Weihs
T. P.
,
2003
, “
Joining bulk metallic glass using reactive multilayer foils
,”
Scripta Materialia
, v.
48
, pp.
1575
1580
.
3.
Wang
J.
,
Besnoin
E.
,
Knio
O. M.
, and
Weihs
T. P.
,
2004
, “
Investigating the effecto of applied pressure on reactive multilayer foil joining
,”
Acta Materialia
, v.
52
, pp.
5265
5274
.
4.
Shtanksy
D.
,
Gloushankova
N.
,
Sheveiko
A.
,
Khartionova
M.
,
Moizhess
T.
,
Levashov
E.
, and
Ross
F.
,
2005
, “
Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications
,”
Biomaterials
, v.
26
(
16
), pp.
2909
2924
.
5.
Mann
A. B.
,
Gavens
A. J.
,
Reiss
M. E.
,
Van Heerden
D.
,
Bao
G.
, and
Weihs
T. P.
,
1997
, “
Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils
,”
J. Appl. Phys.
, v.
82
, pp.
1178
1188
.
6.
Jayaraman
S.
,
Knio
O. M.
,
Mann
A. B.
, and
Weihs
T. P.
,
1999
, “
Numerical predictions of oscillatory combustion in reactive multilayers
,”
J. Appl. Phys.
v.
86
, pp.
800
809
.
7.
Jayaraman
S.
,
Mann
A. B.
,
Mann
A. D.
,
Weihs
T. P.
, and
Knio
O. M.
,
2001
, “
Numerical Study of the Effect of Heat Losses on Self-Propagating Reactions in Multilayer Foils
,”
Combustion and Flame
, v.
124
, pp.
178
194
.
8.
Besnoin
E.
,
Cerutti
S.
,
Knio
O. M.
, and
Weihs
T. P.
,
2002
, “
Effect of reactant and product melting on selfpropagating reactions in multilayer foils
,”
J. Appl. Phys.
v.
92
, pp.
5474
5481
.
9.
Makino
A.
,
2003
, “
Heterogeneous flame propagation in the self-propagating high-temperature, synthesis (SHS) process in multi-layer foils: theory and experimental comparisons
,”
Combustion and Flame
, v.
134
, pp.
273
288
.
10.
Merzhanov
A. G.
,
Borovinskaya
I. P.
,
1975
A New Class of Combustion Processes
,”
Combustion Science Technology
, v.
10
, pp.
195
201
.
11.
Gennari
S.
,
Maglia
F.
,
Anselmi-Tamburini
U.
, and
Spinolo
G.
,
2002
, “
Self-Propagatin High-Temperature Synthesis of Intermetallic Compounds: A Computer Simulation Approach to Chemical Mechanism
,”
J. Phys. Chem. B
, v.
107
, pp.
732
738
.
12.
Ma
E.
,
Thompson
C. V.
,
Clevenger
L. A.
, and
Tu
K. N.
,
1990
, “
Self-propagating explosive reactions in Al/Ni multilayer thin films
,”
Appl. Phys. Letters
, v.
57
, pp.
1262
1264
.
13.
Clevenger
L. A.
,
Thompson
C. V.
, and
Tu
K. N.
,
1990
, “
Explosive silicidation in nickel / amorphous-silicon multilayer thin films
,”
J. Appl. Phys.
v.
67
, pp.
2894
2898
.
14.
Weihs, T.P., Gavens, A.J., Reiss, M.E., van Heerden, D., Draffin, A., and Stanfield, D. 1997, “Self Propagating Exothermic Reactions in Nanoscale Multilayer Materials,” in Ma, E., Shull, R., Morral, J., and Nash, P.(Ed) Chemisty and Physics of Nanostructures and related non-Equilibrium Materials, The Minerals, Metals, and Materials Society, pp. 75–86.
15.
Rogachev
A. S.
,
Grigoryan
A. E.
,
Illarionova
E. V.
,
Kanel
I. G.
,
Merzhanov
A. G.
,
Nosyrev
A. N.
,
Sachkova
N. V.
,
Khvesyuk
V. I.
, and
Tsygankov
P. A.
,
2004
, “
Gasless combustion of Ti-Al Bimetallic Multilayer Nanofoils
,”
Combustion, Explosion, and Shock Waves
, v.
40
, pp.
166
171
.
16.
Anselmi-Tamburini
U.
, and
Munir
Z.
,
1989
, “
The propagation of solid-state combustion wave in Ni-Al foils
,”
J. Appl. Phys.
, v.
66
, pp.
5039
5045
.
17.
Gachon
J.
,
Rogachev
A.
,
Grigoryan
H.
,
Illarionova
E.
,
Kuntz
J.
,
Kovalev
D.
,
Nosyrev
A.
,
Sachkova
N.
, and
Tsygankov
P.
,
2005
, “
On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms
,”
Acta Materialia
, v.
53
, pp.
1225
1231
.
18.
Lee
J. H.
, and
Verhoeven
J. D.
,
1994
, “
The Nature of Unusual γ′/ γ′ Interfaces formed upon Quenching Directionally Solidifying Ni3Al alloys
,”
J. Crystal Growth.
, v.
142
, pp.
193
208
.
19.
Lee
J. H.
, and
Verhoeven
J. D.
,
1994
, “
Eutectic Formation in the Ni-Al system
,”
J. Crystal Growth.
, v.
143
, pp.
86
102
.
20.
Lee
J. H.
, and
Verhoeven
J. D.
,
1994
, “
Peritectic Formation in the Ni-Al system
,”
J. Crystal Growth.
, v.
144
, pp.
353
366
.
21.
Nash, P., Singleton, M.F., and Murray, J.L. 1991, “Al-Ni (Aluminum Nickel)” in P. Nash, Phase Diagrams of Binary Nickel Alloys/7712Pb (Monograph series on alloy phase diagrams), Asm Intl., pp. 3–11.
22.
Davis, S., 2001, Theory of Solidification, Cambridge University Press, Cambridge, UK.
This content is only available via PDF.
You do not currently have access to this content.