The choice of the type of fuel used as energy source for the aluminum melting can be of extreme importance for a better performance as well as for a greater preservation of the equipments. The option of a liquid or gaseous fuel can significantly alter the combustion aspects inside the furnace, such as the shape of the flame and the distribution of temperature and heat flux. In the present work, numerical simulations were carried out using the commercial package FLUENT, analyzing different cases with two types of fuel: a spray of liquid oil and a natural gas jet, both reacting with pure oxygen. The results showed the possible damages caused by the process if long or too intense and concentrated flames are present, increasing very much the wall temperatures and compromising the heat flux on the aluminum surface.

1.
Gran
I. R.
and
Magnussen
R. F.
,
1996
, “
A numerical study of a bluff-body stabilized diffusion flame - part 2 - influence of combustion modeling and finite-rate chemistry
,”
Combustion Science and Technology
,
119
, p.
191
217
.
2.
Gran
I. R.
,
Lrtesvaˆg
I. S.
and
Magnussen
B. F.
,
1997
, “
Influence of Turbulence Modeling on Predictions of Turbulent Combustion
,”
AIAA Journal
,
35
(
1
), p.
106
110
.
3.
Ma
C. Y.
,
Mahmud
T.
,
Gaskell
P. H.
and
Hampartsoumian
E.
,
1999
. “
Numerical predictions of a turbulent diffusion flame in a cylindrieal combustor using eddy dissipation and flamelet combustion models
,” Proc. of the Institution of Mechanical Engineers - Part C,
Journal of Mechanical Engineering Science
, Part C,
213
(
7
), p.
697
705
.
4.
Magel, H.C., Schnell, U., and Hein, K.R.G., 1996, “Modeling of hydrocarbon and nitrogen chemistry in turbulent combustor flows using detailed reaction mechanisms,” 3rd Workshop on Mod. of Chem. Reac. Systems, Heidelberg
5.
Gorner
K.
,
e Zinser
W.
,
1990
, “
Simulation of industrial combustion systems
,”
Int Chem. Eng.
,
30
(
4
), p.
607
619
.
6.
Gomes, M. S. P, Nieckele, A.O., Naccache, M. F., and Kobayashi, W., 1997. “Numerical investigation of the oxygen enriched combustion process in a cylindrical furnace,” Proc. 4th Int. Conf. on Tech. and Combustion for a Clean Environment, Portugal, II, Oxy-combustion, 36 1, pp. 1–5.
7.
Christo
F. C.
,
Fletcher
D. F.
,
Joseph
J. D.
,
1998
, “
Computational Fluid dynamics modelling of a landfill gas flare
,”
Journal of the Institute of Energy
,
71
, p.
145
151
.
8.
Ealon
A. M.
,
Smoot
L. D.
and
Eatough
C. N.
,
1999
, “
Components, formulations, solutions, evaluation, and application of comprehensive combustion models
,”
Progress in energy and combustion science
,
25
(
4
), p.
387
436
.
9.
Gran
I. R.
,
Ertesvaˆg
I. S.
and
Magnussen
B. F.
,
1997
, “
Influence of turbulence modeling on predictions of turbulent combustion
,”
AIAA Journal
,
35
(
1
), p.
106
110
.
10.
Nieckele, A.O.; Naecache, M. F.; Gomes, M. S. P. and Kobayashi, W., 1999, “The influence of oxygen injection configuration in the performance of an aluminum melting furnace,” Proceedings of 1999 ASME-IMECE, USA, Heat Transfer Division, 2, pp. 405–412.
11.
Nieckele
A. O.
,
Naecache
M. F.
,
Gomes
M. S. P.
,
2004
, “
Numerical simulation of a three dimensional aluminum melting furnace
,”
Journal of Energy Resources Technology, ASME
,
126
, pp.
72
81
.
12.
Brewster
B. S.
;
Webb
B. W.
;
McQuay;
M. Q.
,
D’Agostini
M.
and
Baukal
C. E.
,
2001
, “
Combustion measurements and modelling in an oxygen-enriched aluminium-recycling furnace
,”
Journal of the Institute of Energy
,
74
, pp.
11
17
.
13.
Mukhopadhyay, A.; Puri, I.K.; Zelepouga, S. and Rue, D.M., 2001, “Numerical simulation of methane-air nozzle burners for aluminum remelt furnaces,” Proceedings of 2001 ASME-IMECE, USA, CD-ROM, HTD-24234.
14.
Nieckele, A.O.; Naecache, M.F.; Gomes, M. S. P.; Carneiro, J.N.E.; Serfaty, R., 2002, “Numerical simulation of natural gas combustion using a one step and a two step reaction,” Proceedings of 2002 ASME-IMECE, November 11–16, New Orleans, LO, USA.
15.
Reveillon
J.
;
Vervisch
L.
;
2000
, “
Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model
,”
Journal of Combustion and Flame
, April 2000,
121
(
1
), pp.
75
90
(16).
16.
Demoulin
F. X.
,
Borghi
R.
,
2002
, “
Modeling of turbulent spray combustion with application to diesel like experiment
,”
Combustion and Flame
129
(
3
), p.
281
293
17.
Kuo, K.K., 1986, Principles of Combustion, John Wiley & Sons, New York.
18.
Launder
B. E.
and
Spalding
D. B.
,
1974
, “
The numerical computation of turbulent flows
,”
Computer Methods in App. Mech. and Engineering
,
3
, p.
269
289
.
19.
Patankar, S.V. and Spalding, D.B., 1967, Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London.
20.
Smith
T. F.
,
Shen
Z. F.
, and
Friedman
J. N.
,
1982
, “
Evaluation of coefficients for the weighted sum of gray gases model
,”
Transactions of the ASME - Journal of Heat Transfer
,
104
, p.
602
608
.
21.
Nieckele, A.O.; Naecache, M.F., Gomes, M.S.P.; Carneiro, J.N.E.; Serfaty, R., 2001, “Models evaluations of combustion processes in a cylindrical furnace,” Proceedings of 2001 ASME IMECE, 2001, New York, NY. CD-ROM
22.
Fluent User’s Guide, v. 4.3, 1995, Fluent Inc., New Hampshire.
This content is only available via PDF.
You do not currently have access to this content.