Two potential molecular imaging vectors are investigated for material properties and magnetic resonance imaging (MRI) contrast improvement. Monodisperse magnetite (Fe3O4) nanocrystals ranging in size from 7 to 22 nm are solvothermally synthesized by thermolysis of Fe(III) acetylacetonate (Fe(AcAc)3) both with and without the use of heptanoic acid (HA) as a capping ligand. For the resulting Fe3O4 nanocrystals, X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and superconducting quantum interference device magnetometry (SQUID) is used to identify the average particle size, monodispersity, crystal symmetry, and magnetic properties of the ensembles as a function of time. The characterization study indicates that the HA synthesis route at 3 hours produced nanoparticles with the greatest magnetic anisotropy (15.8 × 104 J/m3). The feasibility of Fe8 single molecule magnets (SMMs) as a potential MRI contrast agent is also examined. SQUID magnetization measurements are used to determine anisotropy and saturation of the potential agents. The effectiveness of the Fe3O4 nanocrystals and Fe8 as potential MRI molecular probes is evaluated by MRI contrast improvement using 1.5 mL phantoms dispersed in de-ionized water. Results indicate that the magnetically optimized Fe3O4 nanocrystals and Fe8 SMMs hold promise for use as contrast agents based on the reported MRI images and solution phase T1/T2 shortening.

1.
Wickline, S. A. and Lanza, G. M., 2002, “Molecular Imaging, Targeted Therapeutics, and Nanoscience,” Journal of Cellular Biochemistry, Vol., pp. 90–97.
2.
Flacke
S.
,
Fischer
S.
,
Scott
M. J.
,
Fuhrhop
R. J.
,
Allen
J. S.
,
McLean
M.
,
Winter
P.
,
Sicard
G. A.
,
Gaffney
P. J.
,
Wickline
S. A.
and
Lanza
G. M.
,
2001
, “
Novel MRI Contrast Agent for Molecular Imaging of Fibrin Implications for Detecting Vulnerable Plaques
,”
Circulation
, Vol.
104
, pp.
1280
1285
.
3.
Ruehm
S. G.
,
Corot
C.
,
Vogt
P.
,
Kolb
S.
and
Debatin
J. F.
,
2001
, “
Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits
,”
Circulation
, Vol.
103
, pp.
415
422
.
4.
Lanza
G. M.
,
Yu
X.
,
Winter
P. M.
,
Abendschein
D. R.
,
Karukstis
K. K.
,
Scott
M. J.
,
Chinen
L. K.
,
Fuhrhop
R. W.
,
Scherrer
D. E.
and
Wickline
S. A.
,
2002
, “
Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells with a Magnetic Resonance Imaging Nanoparticle Contrast Agent Implications for Rational Therapy of Restenosis
,”
Circulation
, Vol.
106
, pp.
2842
2847
.
5.
Barker, A. J., Cage, B., Russek, S. and Stoldt, C., 2005, “Ripening during Magnetite Nanoparticle Synthesis: Resulting Interfacial Defects and Magnetic Properties,” Journal of Applied Physics, Submitted.
6.
Cage, B., Barker, A., Russek, S., Stoldt, C., Lanning, C., Garg, R., Shandas, R., Zipse, D. and Dalal, N., 2005, “Single-molecule magnets hold promise as water-soluble iron-based magnetic resonance imaging contrast agents of a size less than 5 nm,” NMR in Biomedicine, Submitted.
7.
Callister, W. D., Materials Science and Engineering: An Introduction. 4th ed. 1997, New York: John Wiley & Sons, Inc.
8.
Bjornerud
A.
and
Johansson
L.
,
2004
, “
The Utility of Superparamagnetic Contrast Agents in MRI: Theoretical Consideration and Applications in the Cardiovascular System
,”
NMR in Biomedicine
, Vol.
17
, pp.
465
477
.
9.
Miles
P. A.
,
Westphal
W. B.
and
von Hippel
A.
,
1957
, “
Dielectric Spectroscopy of Ferromagnetic Semiconductors
,”
Review of Modern Physics
, Vol.
29
, pp.
279
307
.
10.
Lembke
U.
,
Hoell
A.
,
Kranold
R.
,
Muller
R.
,
Schuppel
W.
,
Goerigk
G.
,
Gilles
R.
and
Wiedenmann
A.
,
1999
, “
Formation of Magnetic Nanocrystals in a Glass Ceramic Studied by Small-Angle Scattering
,”
Journal of Applied Physics
, Vol.
85
, pp.
2279
2286
.
11.
Delfs
C.
,
Gatteschi
D.
,
Pardi
L.
,
Sessoli
R.
,
Wieghardt
K.
and
Hanke
D.
,
1993
, “
Magnetic-Properties of an Octanuclear Iron(III) Cation
,”
Inorganic Chemistry
, Vol.
32
, pp.
3099
3103
.
12.
Gatteschi
D.
and
Sessoli
R.
,
2003
, “
Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials
,”
Angewandte Chemie-International Edition
, Vol.
42
, pp.
268
297
.
13.
Hobbs, S. K., 1998, “Regulation of Transport Pathways in Tumor Vessels: Role of Tumor Type and Microenvironment,” in Proceedings of the National Academy of Sciences, USA, Vol. 95, pp. 4607–4612.
14.
Zipse
D.
,
North
J. M.
,
Dalal
N. S.
,
Hill
S.
and
Edwards
R. S.
,
2003
, “
Characterization of the S=9 excited state in Fe8Br8 by electron paramagnetic resonance
,”
Physical Review B
, Vol.
68
, pp.
.
15.
Park
K.
,
Novotny
M. A.
,
Dalal
N. S.
,
Hill
S.
and
Rikvold
P. A.
,
2002
, “
Effects of D-strain, g-strain, and dipolar interactions on EPR linewidths of the molecular magnets Fe-8 and Mn-12
,”
Physical Review B
, Vol.
65
, pp.
.
16.
Murray
C. B.
,
Kagan
C. R.
and
Bawendi
M. G.
,
2000
, “
Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
,”
Annual Review of Materials Science
, Vol.
30
, pp.
545
610
.
17.
Sun
S. H.
and
Murray
C. B.
,
1999
, “
Synthesis of Monodisperse Cobalt Nanocrystals and Their Assembly into Magnetic Superlattices (invited)
,”
Journal of Applied Physics
, Vol.
85
, pp.
4325
4330
.
18.
Lin
X. M.
,
Sorensen
C. M.
,
Klabunde
K. J.
and
Hajipanayis
G. C.
,
1999
, “
Control of Cobalt Nanoparticle Size by the Germ-Growth Method in Inverse Micelle System: Size-Dependent Magnetic Properties
,”
Journal of Materials Research
, Vol.
14
, pp.
1542
1547
.
19.
Zhang
D. J.
,
Klabunde
K. J.
,
Sorensen
C. M.
and
Hadjipanayis
G. C.
,
1998
, “
Magnetization Temperature Dependence in Iron Nanoparticles
,”
Physical Review B
, Vol.
58
, pp.
14167
14170
.
20.
Leslie-Pelecky
D. L.
and
Rieke
R. D.
,
1996
, “
Magnetic properties of nanostructured materials
,”
Chemistry of Materials
, Vol.
8
, pp.
1770
1783
.
21.
Fabian
K.
,
Kirchner
A.
,
Williams
W.
,
Heider
F.
,
Leibl
T.
and
Hubert
A.
,
1996
, “
Three-Dimensional Micromagnetic Calculations for Magnetite Using FFT
,”
Geophysical Journal International
, Vol.
124
, pp.
89
104
.
22.
Hou
Y. L.
,
Yu
J. F.
and
Gao
S.
,
2003
, “
Solvothermal Reduction Synthesis and Characterization of Superparamagnetic Magnetite Nanoparticles
,”
Journal of Materials Chemistry
, Vol.
13
, pp.
1983
1987
.
23.
Hyeon
T.
,
Lee
S. S.
,
Park
J.
,
Chung
Y.
and
Bin Na
H.
,
2001
, “
Synthesis of Hhighly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process
,”
Journal of the American Chemical Society
, Vol.
123
, pp.
12798
12801
.
24.
Sun
S. H.
and
Zeng
H.
,
2002
, “
Size-Controlled Synthesis of Magnetite Nanoparticles
,”
Journal of the American Chemical Society
, Vol.
124
, pp.
8204
8205
.
25.
Peng
X. G.
,
Manna
L.
,
Yang
W. D.
,
Wickham
J.
,
Scher
E.
,
Kadavanich
A.
and
Alivisatos
A. P.
,
2000
, “
Shape Control of CdSe Nanocrystals
,”
Nature
, Vol.
404
, pp.
59
61
.
26.
Huang
F.
,
Zhang
H. Z.
and
Banfield
J. F.
,
2003
, “
The Role of Oriented Attachment Crystal Growth in Hydrothermal Coarsening of Nanocrystalline ZnS
,”
Journal of Physical Chemistry B
, Vol.
107
, pp.
10470
10475
.
27.
Huang
F.
,
Zhang
H. Z.
and
Banfield
J. F.
,
2003
, “
Two-Stage Crystal-Growth Kinetics Observed During Hydrothermal Coarsening of Nanocrystalline ZnS
,”
Nano Letters
, Vol.
3
, pp.
373
378
.
28.
Lu
K.
,
1996
, “
Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties
,”
Materials Science & Engineering R-Reports
, Vol.
16
, pp.
161
221
.
29.
Thomas-Keprta
K. L.
,
Bazylinski
D. A.
,
Kirschvink
J. L.
,
Clemett
S. J.
,
McKay
D. S.
,
Wentworth
S. J.
,
Vali
H.
,
Gibson
E. K.
and
Romanek
C. S.
,
2000
, “
Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils
,”
Geochimica Et Cosmochimica Acta
, Vol.
64
, pp.
4049
4081
.
30.
Johansson
E.
and
Nyborg
L.
,
2000
, “
XPS study of surface-active organic compounds on fine ferrous powder
,”
Surface and Interface Analysis
, Vol.
30
, pp.
333
336
.
31.
Johansson
E.
and
Nyborg
L.
,
2003
, “
XPS study of carboxylic acid layers on oxidized metals with reference to particulate materials
,”
Surface and Interface Analysis
, Vol.
35
, pp.
375
381
.
32.
Murray
C. B.
,
Sun
S. H.
,
Gaschler
W.
,
Doyle
H.
,
Betley
T. A.
and
Kagan
C. R.
,
2001
, “
Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices
,”
IBM Journal of Research and Development
, Vol.
45
, pp.
47
56
.
33.
Shevchenko
E. V.
,
Talapin
D. V.
,
Schnablegger
H.
,
Kornowski
A.
,
Festin
O.
,
Svedlindh
P.
,
Haase
M.
and
Weller
H.
,
2003
, “
Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals
,”
Journal of the American Chemical Society
, Vol.
125
, pp.
9090
9101
.
34.
Devouard
B.
,
Posfai
M.
,
Hua
X.
,
Bazylinski
D. A.
,
Frankel
R. B.
and
Buseck
P. R.
,
1998
, “
Magnetite from Magnetotactic Bacteria: Size Distributions and Twinning
,”
American Mineralogist
, Vol.
83
, pp.
1387
1398
.
35.
Tojo
C.
,
Blanco
M. C.
and
Lopez-Quintela
M. A.
,
1997
, “
Preparation of nanoparticles in microemulsions: A Monte Carlo study of the influence of the synthesis variables
,”
Langmuir
, Vol.
13
, pp.
4527
4534
.
36.
Tojo
C.
,
Blanco
M. C.
and
Lopez-Quintela
M. A.
,
1998
, “
The Influence of Reactant Excess and Film Flexibility on the Mechanism of Nanoparticle Formation in Microemulsions: A Monte Carlo Simulation
,”
Langmuir
, Vol.
14
, pp.
6835
6839
.
37.
Sugimoto
T.
,
1987
, “
Preparation of Monodispersed Colloidal Particles
,”
Advances in Colloid and Interface Science
, Vol.
28
, pp.
65
108
.
38.
Peng
X. G.
,
Wickham
J.
and
Alivisatos
A. P.
,
1998
, “
Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions
,”
Journal of the American Chemical Society
, Vol.
120
, pp.
5343
5344
.
39.
Goya
G. F.
,
Berquo
T. S.
,
Fonseca
F. C.
and
Morales
M. P.
,
2003
, “
Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles
,”
Journal of Applied Physics
, Vol.
94
, pp.
3520
3528
.
This content is only available via PDF.
You do not currently have access to this content.