Lattice Boltzmann Method (LBM) simulations of phonon transport are performed in a computational model of an Siliconon-Insulator (SOI) transistor to investigate the transient thermal response of the device under Joule heating conditions, which give origin to a non-equilibrium region of high temperature known as hotspot. The gray LBM based on the Debye assumption is compared to a dispersion LBM which incorporates nonlinear dispersion for all phonon branches, including explicit treatment of optical phonons without simplifying assumptions. The simulations cover the effect of hotspot size, heat pulse duration, and source term modeling, as either a constant or frequency-dependent term. Results indicate that hotspot peak temperature levels found by both the dispersion and the gray LBM are higher than Fourier diffusion predictions. Additionally, proper modeling of the source term is found to be critical, in order to accurately predict peak hotspot temperatures.

1.
Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Harcourt, Fort Worth, TX, 1976.
2.
P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S.H. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, and M. Bohr, “A 65 nm Logic Technology Featuring 35 nm Gate Length, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57μm2 SRAM Cell,” 2004 IEEE International Electron Devices Meeting.
3.
Cahill
D.
,
Ford
W.
,
Goodson
K. E.
,
Mahan
G.
,
Majumdar
A.
,
Maris
H.
,
Merlin
R.
and
Phillpot
S.
, “
Nanoscale Thermal Transport
,”
Journal of Applied Physics
93
(
2
) (
2003
)
793
818
.
4.
Escobar, R.A., Ghai, S.S., Jhon, M.S. and Amon, C.H., “Time-dependent Simulations of Sub-continuum Heat Generation Effects in Electronic Devices Using The Lattice Boltzmann Method,” IMECE2003-41522 (2003).
5.
Escobar, R.A. and Amon, C.H. “Lattice boltzmann Modeling Of Sub-continuum Energy Transport In Silicon-On-Insulator Microelectronics Including Phonon dispersion Effects,” ITHERM-2004, Las Vegas, NV, (2004).
6.
Escobar, R.A., Ghai, S.S., Jhon, M.S. and Amon, C.H., “Multi- Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method with Application to Electronics Cooling,” International Journal of Heat and Mass Transfer, In press.
7.
Escobar, R.A., “Lattice Boltzmann Modeling of Phonon Transport in Silicon Films,” PhD thesis, Department of Mechanical Engineering, Carnegie Mellon University (2005).
8.
Ghai, S., Kim, W. and Jhon, M., “Modeling of Nanoscale Transport Phenomena: Application to Information Technology,” Internal communication, submitted to Elsevier Science (2005).
9.
Han
Y-J.
, and
Klemens
P.
, “
Anharmonic thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Physical Review B
, Vol.
48
,
9
9
(
1993
).
10.
International Technology Roadmap for Semiconductors, ITRS 2003 update, http://public.itrs.net/.
11.
Narumanchi, S.V., “Simulations of Heat Transport in Sub-micron Conduction.” Mechanical Engineering PhD Thesis, Carnegie Mellon University (2003).
12.
Narumanchi
S. V.
,
Murthy
J. Y.
and
Amon
C. H.
, “
Simulation of Unsteady Small Heat Source Effects in Sub-micron Heat Conduction
,”
Journal of Heat Transfer
125
(
2003
)
896
903
.
13.
Narumanchi
S. V.
,
Murthy
J. Y.
and
Amon
C. H.
, “
Submicron Heat Transport Model in Silicon Accounting for Phonon dispersion and Polarization
,”
Journal of Heat Transfer
, Vol.
12
,
946
955
(
2004
).
14.
Narumanchi, S.V, Murthy, J.Y and C.H. Amon, “Comparison of Different Phonon Transport Models in Predicting Heat Conduction in Sub-micron Silicon-on-Insulator Transistors,” Journal of Heat Transfer, in press, (2005).
15.
Pop, E., Banerjee, G., Sverdrup, P., Dutton, R., and Goodson, K.E., “Localized Heating Effects and Scaling of Sub-0.18 Micron CMOS Devices,” IEEE IEDM01, 677–80 (2001).
16.
Pop, E., Sinha, S., and Goodson, K.E., “Monte Carlo Modeling of Heat Generation in Electronic Nanostructures,” IMECE02/HT-32124 (2002).
17.
Pop, E., Dutton, R. and Goodson, K. “Thermal Analysis of Ultra-thin Body Device Scaling,” IEEE SISPAD, Boston (2003).
18.
Pop, E., Dutton, R. and Goodson, K. “Detailed Heat Generation Simulations via the Monte Carlo Method,” IEEE SISPAD, Boston (2003).
19.
Sinha, S. and Goodson, K., “Phonon Heat Conduction from Nanoscale Hotspots in Semiconductors,” in the 12th International Heat Transfer Conference, Grenoble, France, (2002).
20.
Sinha, S., Schelling, P., Phillpot S., and Goodson, K. “Atomistic Simulations of Non-Equilibrium Phonons in Nanotransistors,” SRC-TECHCON, Dallas, TX, (2003).
21.
Sinha, S. P. K. Schelling, S. R. Phillpot, and K. E. Goodson, “Atomistic Simulations of g-type phonons in silicon devices,” ASME Heat Transfer/ Fluid Mechanics Summer Conference, Charlotte, NC, (2004a).
22.
Sinha, S. Pop, E. and Goodson, K., “A split-flux model for phonon transport near hotspots,” IMECE2004, Anaheim, CA,(2004b).
23.
Sinha, S. and Goodson, K., “Thermal Conduction in Sub-100 nm Transistors,” Thermal Investigations of ICs and Systems (THERMINIC), Cote d’Azur, France, (2004c).
24.
Succi, S., The Lattice boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, UK, 2001.
25.
Sverdrup, P. G., Banerjee, K., Dai, C., Shih, W.K., Dutton, R. W., and Goodson, K. E., “Sub-continuum Thermal Simulations of Deep Sub-Micron Devices Under ESD Conditions,” International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 54–57 (2000).
26.
Sverdrup
P. G.
,
Ju
Y. S.
, and
Goodson
K. E.
, “
Sub-continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
Journal of Heat Transfer
, Vol.
123
,
130
7
(
2001
a).
27.
Sverdrup
P. G.
,
Sinha
S.
,
Asheghi
M.
,
Uma
S.
and
Goodson
K. E.
, “
Measurement of Ballistic Phonon Conduction near hotspots in Silicon
,”
Applied Physics Letters
, Vol.
78
,
21
21
(
2001
b).
28.
Sverdrup
P. G.
,
Ju
Y. S.
and.
Goodson
K. E
Sub-continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,
Journal of Heat Transfer
123
(
2001
)
130
137
.
29.
Tien, C.L., Majumdar, A., and Gerner, F.M., Microscale Heat Conduction, Taylor & Francis, Washington DC, 1998.
30.
Zhang, W. and Fisher, T.S., “Application of the Lattice boltzmann Method to Sub-continuum Heat Conduction,” IMECE2002-32122 (2002).
This content is only available via PDF.
You do not currently have access to this content.