Torque control through feed rate and spindle speed manipulation can produce significant economic benefits for machining processes by reducing the cycle time. This paper focuses on the design and implementation of a fuzzy-logic-based torque control system, embedded in an open architecture computer numerical control (CNC), in order to provide an optimization function for the material removal rate. The control system adjusts the feed rate and spindle speed simultaneously as needed, to regulate the cutting torque using the CNC’s own resources without requiring additional hardware overhead. The control system consists of a two inputs (i.e., torque error and change of error) -two outputs (i.e., the feed rate and spindle speed increment) fuzzy controller, which are embedded within the kernel of a standard open control. Two approaches are tested and their performance is assessed using several performance measurements. These approaches are the two inputs-two outputs for the fuzzy controller and a single-output fuzzy controller (i.e., only feed rate modification). The results demonstrate that the proposed control strategy provides better accuracy, and machining cycle time than the others, thus increasing the metal removal rate.

1.
Ovaska
S. J.
,
VanLandingham
H. F.
, and
Kamiya
A.
,
2002
, “
Fusion of soft computing and hard computing in industrial applications: an overview
,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
,
32
(
2
), pp.
72
79
.
2.
Liu
X. J.
,
Lara-Rosano
F.
,
Chan
C. W.
,
2004
, “
Modelreference adaptive control based on neurofuzzy networks
,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
,
34
(
4
), pp.
302
309
.
3.
Liu
Y.
and
Wang
C.
,
1999
, “
Neural networks based adaptive control and optimization in milling process
,”
International Journal of Advanced Manufacturing Technology
,
15
, pp.
791
795
.
4.
Haber
R. E.
and
Alique
J. R.
,
2004
, “
Nonlinear internal model control using neural networks: Applications to machining processes
,”
Neural Computing and Applications
,
13
, pp.
47
55
.
5.
Liang
S. Y.
,
Hecker
R. L.
and
Landers
R. G.
,
2004
, “
Machining process monitoring and control: The state-of-the-art
,”
Journal of Manufacturing Science and Engineering
,
126
, pp.
297
310
.
6.
Haber
R. E.
,
Peres
C. R.
,
Alique
A.
,
Gonzalez
C.
and
Alique
J. R.
,
1998
, “
Towards intelligent machining: hierarchical fuzzy control for end milling process
,”
IEEE Transactions on Control Systems Technology
,
6
(
2
), pp.
188
199
.
7.
Li
X.
,
Li
H.-X.
,
Guan
X.-P.
and
Du
R.
,
2004
, “
Fuzzy estimation of feed-cutting force from current measurementa case study on intelligent tool wear condition monitoring
,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
,
34
(
4
), pp.
506
512
, 2004.
8.
Engin
S.
,
Altintas
Y.
,
2001
, “
Mechanics and dynamics of general milling cutters Part I: helical end mills
,”
Int. Journal of Machine Tools and Manufacture
41
, pp.
2195
2212
.
9.
Haber
R. E.
,
Jime´nez
J. E.
,
Coronado
J. L.
,
Jime´nez
A.
,
2004
, “
Cutting force model for a high-speed machining process
,”
Revista Metalurgia Madrid
,
40
(
4
), pp.
247
258
.
10.
Roth
D.
,
Ismail
F.
,
Bedi
S.
,
2003
, “
Mechanistic model of the milling process using an adaptive depth buffer
,”
Computer Aided Design
35
, pp.
1287
1303
.
11.
Martellotti
M.
,
1945
, “
An analysis of the milling process, part ii-down milling
,”
Trans ASME
,
67
(
1
), pp.
233
251
.
12.
Budak
E.
,
Altintas
Y.
,
Armarego
E. J. A.
,
1996
, “
Prediction of milling force coefficients from orthogonal cutting data
,”
J. Eng. Ind. Trans. ASME
,
118
, pp.
216
224
.
13.
Yoon
M. C.
,
Kim
Y. G.
,
2004
, “
Cutting dynamic force modelling of end-milling operation
,”
Journal of Materials Processing Technology
155–156
, pp.
1383
1389
.
14.
Fussell
B. K.
,
Jerard
R. B.
,
Hemmett
J. G.
,
2001
, “
Robust feedrate selection for 3-axis nc mchining using discrete models
,”
ASME J Manuf Sci Engng
,
123
(
2
), pp.
214
224
.
15.
Fussell
B. K.
,
Jerard
R. B.
,
Hemmett
J. G.
,
2003
, “
Modeling of cutting geometry and forces for 5-axis sculptured surface machining
,”
Computer-Aided Design
,
35
(
4
), pp.
333
346
.
16.
Landers
R. G.
,
Ulsoy
A. G.
and
Ma
Y.-H
,
2004
, “
A comparison of model-based machining force control approaches
,”
Int. Journal of Machine Tools and Manufacture
,
44
, pp.
733
748
.
17.
Oh
Y. T.
,
Kwon
W. T.
and
Chu
C. N.
,
2004
, “
Drilling torque control using spindle motor current and its effect on tool wear
,”
International Journal of Advanced Manufacturing Technology
,
24
, pp.
327
334
.
18.
Furness
R. J.
,
Tsao
T. T.
,
Rankin
J. S.
,
Muth
M. J.
and
Manes
K. W.
,
1999
, “
Torque control for a form tool drilling operation
,”
IEEE Transactions on Control, Systems Technology
7
(
1
), pp.
22
30
.
19.
Liang
M.
,
Yeap
T.
,
Hermansyah
A.
and
Rahmati
S.
,
2003
, “
Fuzzy control of spindle torque for industrial CNC machining
,”
International Journal of Machine Tools & Manufacture
,
43
, pp.
1497
1508
.
20.
Oh
Y. T.
,
Kim
G. D.
and
Chu
C. N.
,
2003
, “
Design of a drilling torque controller for a machining torque
,”
International Journal of Advanced Manufacturing Technology
,
22
, pp.
329
335
.
21.
Liang
M.
,
Yeap
T.
and
Hermansyah
A.
,
2004
, “
A fuzzy system for chatter suppression in end milling
,”
Proceedings of the IME: Part B-Journal of Engineering Manufacture
,
218
(
4
), pp.
403
417
.
22.
Ying
H.
,
1999
, “
Analytical structure of a typical fuzzy controller employing trapezoidal input fuzzy sets and nonlinear control rules
,”
Information Science
,
116
, pp.
177
203
.
23.
Mohan
B. M.
and
Patel
A. V.
,
2002
, “
Analytical structures and analysis of the simplest fuzzy PD controllers
,”
IEEE Transactions on Systems, Man and Cybernetics-Part B. Cybernetics
,
32
(
2
), pp.
239
248
, 2002.
24.
Nosrat A., 1997, “Adaptive controls lead to peak efficiency,” American Machinist, April, pp. 78–80.
25.
Haber
R. E.
,
Alique
A.
,
Alique
J. R.
,
Herna´ndez
J.
and
Uribe-Etxabarria
R.
,
2003
, “
Embedded fuzzy control system for machining processes. Results of a case-study
,”
Computers in Industry
,
50
, pp.
353
366
.
26.
Tiwari
A.
,
Shankar
N.
and
Rushby
J.
,
2003
, “
Invisible formal methods for embedded control systems
,”
Proceedings of IEEE
,
91
(
1
), pp.
29
39
.
27.
Sinumerik 840d, OEM-package NCK, software release 4, User’s Manual, Siemens AG, 1999.
28.
Jime´nez J. E., Haber R. E., Alique J.R., “A MIMO fuzzy control system for high speed machining processes. Results of a case study,” in proc. of IEEE Conference on Fuzzy Systems, Budapest, Hungary, 2004, pp. 901–905.
29.
Haber
R. E.
,
Schmitt-Braess
G.
,
Haber-Haber
R.
,
Alique
A.
and
Alique
J. R.
,
2003
, “
Using circle criteria for verifying asymptotic stability in PI-like fuzzy control systems. An application to the milling process
,”
IEE Proceedings on Control Theory and Applications
,
150
(
6
), pp.
619
627
.
This content is only available via PDF.
You do not currently have access to this content.