Resin Transfer Molding (RTM) is a manufacturing process to produce polymer composite parts. RTM is comprised of four stages: 1) cutting and placing of the fiber mats (preform) inside a mold, 2) resin injection, 3) curing of the part, and 4) demolding of the hardened part. Resin injection is the most critical stage in RTM and it can be affected by unpredictable parameters such as preform permeability variations. These variations can produce unrepeatable filling patterns where the Last Point to Fill (LPF) may not coincide with the exit vent location. Failure to completely wet the fibers inside the mold can cause dry spots which are major defects that usually require the part to be scrapped. In order to overcome the uncertainties in the filling stage, adaptive control can be used to monitor and regulate the flow front such that the LPF coincides with the vent location. Recently, the development of sensors has allowed continuous sensing of the flow front in a straight line. Such sensors can be placed between the injection gates and the vent. The location of these sensors can affect adaptive control and the resulting filling pattern and, therefore, the final quality of the part. The work presented in this paper uses a search algorithm to find the optimal location for the sensors. The results of this optimization study can be used to enhance future control algorithms and, therefore, can lead to a more successful RTM process.

1.
Ahn
S. H.
,
Lee
W. I.
, and
Springer
G. S.
,
1995
, “
Measurement of the 3-Dimensional Permeability of Fiber Preforms Using Embedded Fiber Optic Sensors
,”
Journal of Composite Materials
,
29
, no.
6
, pp.
714
733
.
2.
Bernstein
J. R.
, and
Wagner
J. W.
,
1997
, “
Fiber Optic Sensors for Use in Monitoring Flow Front in Vacuum Resin Transfer Molding Processes
,”
Review of Scientific Instruments
,
68
, no.
5
, pp.
2156
2157
.
3.
Crosby
P. A.
,
Powell
G. R.
,
Fernando
G. F.
,
Waters
D. N.
,
France
C. M.
, and
Spooncer
R. C.
,
1997
Comparative Study of Optical Fiber Cure Monitoring Methods
,”
SPIE The International Society for Optical Engineering
,
3042
, pp.
141
153
.
4.
Shepard
D. D.
, and
Smith
K. R.
,
1999
, “
Ultrasonic Cure Monitoring of Advanced Composites
,”
Sensor Review
,
19
, no.
3
, pp.
187
191
.
5.
Fomitchov
P. A.
,
Kim
Y. K.
,
Kromine
A. K.
, and
Krishnaswamy
S.
,
2002
, “
Laser Ultrasonic Array System for Real-Time Cure Monitoring of Polymer-Matrix Composites
,”
Journal of Composite Materials
,
36
, no.
15
, pp.
1889
1901
.
6.
Woerdeman
D. L.
, and
Parnas
R. S.
,
1995
, “
Cure Monitoring in RTM Using Fluorescence
,”
Plastics Engineering
,
51
, no.
10
, pp.
25
25
.
7.
Tavakoli
S. M.
,
Avella
M.
, and
Phillips
M. G.
,
1990
, “
Fiber Resin Compatibility in Glass Phenolic Laminating Systems
,”
Composites Science and Technology
,
39
, no.
2
, pp.
127
145
.
8.
Barooah
P.
,
Berker
B.
, and
Sun
J. Q.
,
1998
, “
Lineal Sensors for Liquid Injection Molding of Advanced Composite Materials
,”
Journal of Materials Processing & Manufacturing Science
,
6
, no.
3
, pp.
169
184
.
9.
Lee
C. W.
,
Rice
B. P.
,
Buczek
M.
, and
Mason
D.
,
1998
, “
Resin Transfer Process Monitoring and Control
,”
SAMPE Journal
,
34
, no.
6
, pp.
48
55
.
10.
Schwab
S. D.
,
Levy
R. L.
, and
Glover
G. G.
,
1996
, “
Sensor System for Monitoring Impregnation and Cure During Resin Transfer Molding
,”
Polymer Composites
,
17
, no.
2
, pp.
312
316
.
11.
Shepard, D. D., 1998, “Resin Flow Front and Cure Detection in RTM and Other Resin Infusion Processes,” Proc., 30th International SAMPE Technical Conference, pp. 351–360.
12.
Kranbuehl
D.
,
Hood
D.
,
Kriss
A.
,
Barksdale
R.
,
Loos
A. C.
,
Macrae
J. D.
, and
Hasko
G.
,
1996
, “
In situ FDEMS Sensing and Modeling of Epoxy Infiltration, Viscosity and Degree of Cure During Resin Transfer Molding of a Textile Preform
,”
Polymeric Materials Science Engineering
,
74
, pp.
28
29
.
13.
Kranbuehl
D.
,
Hoff
M.
,
Eichinger
D.
,
Clark
R.
, and
Loos
A.
,
1989
, “
Monitoring and Modeling the Cure Processing Properties of Resin Transfer Molding Resins
,”
International SAMPE Symposium and Exhibition
,
34
, pp.
416
425
.
14.
Kranbuehl
D. E.
,
Kingsley
P.
,
Hart
S.
,
Hasko
G.
,
Dexter
B.
, and
Loos
A. C.
,
1994
, “
In-Situ Sensor Monitoring and Intelligent Control of the Resin Transfer Molding Process
,”
Polymer Composites
,
15
, no.
4
, pp.
299
305
.
15.
Kranbuehl, D. E., Williamson, A., and Loos, A. C., 1991, “Sensor-Model In-Situ Control Of the RTM Composite Process,” Proc., 36th International SAMPE Symposium and Exhibition, pp. 536–545.
16.
Kranbuehl, D. E., Hoff, M., Eichinger, D., Clark, R., and Loos, A. C., 1989, “Monitoring and Modeling the Cure Processing Properties of Resin Transfer Molding Resins,” Proc., 34th International SAMPE Symposium and Exhibition, pp. 416–425.
17.
Rooney, M., Biermann, P. J., Carkhuff, B. G., Shires, D. R., and Mohan, R. V., 1998, “Development of In-Process RTM Sensors for Thick Composite Sections,” Proc., 1998 American Control Conference, 6, pp. 3875–3878.
18.
Skordos
A. A.
,
Karkanas
P. I.
, and
Partridge
I. K.
,
2000
, “
A Dielectric Sensor for Measuring Flow in Resin Transfer Moulding
,”
Measurement Science & Technology
,
11
, no.
1
, pp.
25
31
.
19.
Hegg
M.
,
Ogale
A.
,
Mescher
A.
,
Mamishev
A.
,
Minaie
B.
,
2005
, “
Remote Monitoring of Resin Transfer Molding Processes by Distributed Dielectric Sensors
,”
Journal of Composite Materials
,
00
, pp.
1
21
.
20.
Rowe, G., Yi, J., Chiu, K., Tan, J., Mamishev, A., Minaie, B., 2005, “Fill-Front and Cure Progress Monitoring for VARTM with Auto-Calibrating Dielectric Sensors,” Proc., SAMPE 2005 Conference.
21.
Mathur
R.
,
Fink
B.
,
Advani
S.
,
1999
, “
Use of Genetic Algorithm to Optimize Gate and Vent Locations for the Resin Transfer Molding Process
,”
Polymer Composites
,
20
, no.
2
, pp.
167
178
.
22.
Lin
M. Y.
,
Murphy
M. J.
,
Hahn
H. T.
,
2000
, “
Resin transfer molding process optimization
,”
Composites: Part A
,
31
, pp.
361
371
.
23.
Luo
J.
,
Liang
Z.
,
Zhang
C.
,
Wang
B.
,
2001
, “
Optimum tooling design for resin transfer molding with virtual manufacturing and artificial intelligence
,”
Composites: Part A
,
32
, pp.
877
888
.
24.
Jiang
S.
,
Zhang
C.
,
Wang
B.
,
2002
, “
Optimum arrangement of gate and vent locations for RTM process design using a mesh distance approach
,”
Composites: Part A
,
33
, pp.
471
481
.
25.
Gokce
A.
,
Hsiao
K-T.
,
Advani
S. G.
,
2002
, “
Branch and bound search to optimize injection gate locations in liquid composite molding processes
,”
Composites: Part A
,
22
, pp.
1263
1272
.
26.
Gokce
A.
,
Advani
S. G.
,
2003
, “
Combinatorial Search to Optimize Vent Locations in the Presence of Disturbances in Liquid Composite Molding Processes
,”
Materials and Manufacturing Processes
,
18
, no.
2
, pp.
261
285
.
27.
Gokce
A.
,
Advani
S. G.
,
2004
, “
Simultaneous Gate and Vent Location Optimization in Liquid Composite Molding
,”
Composites: Part A
,
35
, pp.
1419
1432
.
28.
Hsiao
K-T.
,
Advani
S. G.
,
2004
, “
Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding. Part I: design and algorithm development
,”
Composites: Part A
,
35
, pp.
1149
1159
.
29.
Voller
V. R.
, and
Peng
S.
,
1995
, “
An Algorithm for Analysis of Polymer Filling of Molds
,”
Polymer Engineering and Science
,
35
, no.
22
, pp.
1758
1765
.
30.
Restrepo, O., Rodriguez A., Hsiao, K-T., Minaie, B., 2005, “Adaptive Flow Control Using Spinal Sensor Configuration,” Proc., SAMPE 2005 Conference.
This content is only available via PDF.
You do not currently have access to this content.