Diesel engines fulfill diverse demands in urban and rural areas throughout the world. While the advantages of compression ignition engines are superior to other internal combustion engines in torque generation and fuel efficiency, some diesel exhaust emissions pose health and environmental problems. Emission reduction techniques generally diminish one type of tailpipe gas yet often sacrifice engine performance and may even raise other emission levels. For instance, exhaust gas recirculation can reduce NOx emissions. However, the dilution of the combustion charge with hot inert exhaust gas hinders the engine’s power characteristics. To solve this problem, an EGR cooler allows the exhaust gases to be cooled prior to mixing with intake air allowing a denser cylinder charge for combustion. The effective application of cooled EGR requires a smart thermal management system. In this paper, a real time empirical and analytical model will be introduced to estimate the diesel engine’s overall performance. The simplified model considers the engine’s combustion chemistry, as well as the thermal, emissions, and rotational dynamics. Representative numerical and experimental test results are presented and discussed to validate the model. Eventually, an on-board computer controller will use this model to regulate the EGR valve’s functionality and the smart thermal system.
Skip Nav Destination
ASME 2005 International Mechanical Engineering Congress and Exposition
November 5–11, 2005
Orlando, Florida, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
0-7918-4216-9
PROCEEDINGS PAPER
Advanced Automotive Engine Thermal Management: Simplified Diesel Engine Model and Experimental Validation
Christopher J. Simoson,
Christopher J. Simoson
Clemson University
Search for other works by this author on:
John R. Wagner
John R. Wagner
Clemson University
Search for other works by this author on:
Christopher J. Simoson
Clemson University
John R. Wagner
Clemson University
Paper No:
IMECE2005-79893, pp. 375-384; 10 pages
Published Online:
February 5, 2008
Citation
Simoson, CJ, & Wagner, JR. "Advanced Automotive Engine Thermal Management: Simplified Diesel Engine Model and Experimental Validation." Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Orlando, Florida, USA. November 5–11, 2005. pp. 375-384. ASME. https://doi.org/10.1115/IMECE2005-79893
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Numerical and Experimental Study on the Impact of Mild Cold Exhaust Gas Recirculation on Exhaust Emissions in a Biodiesel-Fueled Diesel Engine
J. Eng. Gas Turbines Power (November,2021)
PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation
J. Dyn. Sys., Meas., Control (September,2010)
Computationally Efficient Whole-Engine Model of a Cummins 2007 Turbocharged Diesel Engine
J. Eng. Gas Turbines Power (February,2010)
Related Chapters
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Physiology of Human Power Generation
Design of Human Powered Vehicles
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration