This paper presents the design, fabrication and testing of a novel, one degree of freedom, magnetic resonance (MR) compatible, computer controlled, variable resistance hand device that will be used in fMRI studies of the brain and motor performance during rehabilitation after stroke. The device consists of four major subsystems: a) the Electro-Rheological Fluid (ERF) resistive element; b) the gearbox; c) the handles and d) the sensors: one optical encoder and one force sensor was implemented into the device design to measure the patient induced motion and force, respectively. A key feature of the device is the use of electro rheological fluids (ERF) to achieve resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. Using the electrically controlled rheological properties of ERFs, compact resistive elements with an ability to supply high resistive torques in a controllable and tunable fashion, have been developed. The hand device is designed to resist up to 50% of maximum level of gripping force of a human hand and be controlled in real time. Our study demonstrates that there is neither an effect from MR environment on the ERF properties and performance of the sensors, nor significant degradation on MR images by the introduction of ERF driven hand device in the MR environment. The results are encouraging in combining functional Magnetic Resonance Imaging methods, with MR compatible robotic devices for improved effectiveness of rehabilitation therapy.

1.
Bogousslavsky
J.
,
Van Melle
G.
, and
Regli
F.
, “
The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke
,”
Stroke
, vol.
19
, pp.
1083
92
,
1988
.
2.
Indredavik
B.
,
Slordahl
S. A.
,
Bakke
F.
,
Rokseth
R.
, and
Haheim
L. L.
, “
Stroke unit treatment. Long-term effects
,”
Stroke
, vol.
28
, pp.
1861
6
,
1997
.
3.
Pomeroy
V. M.
,
Tallis
R. C.
, “
Need to Focus Research in Stroke Rehabilitation
,”
Lancet
,
355
:
836
837
,
2000
.
4.
Krebs
H. I.
,
Volpe
B. T.
,
Aisen
M. L.
, and
Hogan
N.
, “
Increasing productivity and quality of care: Robot-aided neuro-rehabilitation
,”
Journal of Rehabilitation Research and Development
, vol.
37
, pp.
639
652
,
2000
.
5.
Reinkensmeyer
D. J.
,
Kahn
L. E.
,
Averbuch
M.
,
McKenna-Cole
A.
,
Schmit
B. D.
, and
Rymer
W. Z.
, “
Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide
,”
Journal of Rehabilitation Research and Development
, vol.
37
, pp.
653
662
,
2000
.
6.
Jack
D.
,
Boian
R.
,
Merians
A. S.
,
Tremaine
M.
,
Burdea
G. C.
,
Adamovich
S. V.
,
Recce
M.
, and
Poizner
H.
, “
Virtual reality-enhanced stroke rehabilitation
,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering
, vol.
9
, pp.
308
318
,
2001
.
7.
Johansson
B. B.
, “
Brain plasticity and stroke rehabilitation. The Willis lecture
,”
Stroke
, vol.
31
, pp.
223
30
,
2000
.
8.
Lee
R. G.
and
van Donkelaar
P.
, “
Mechanisms underlying functional recovery following stroke
,”
Can J Neurol Sci
, vol.
22
, pp.
257
63
,
1995
.
9.
Dijkhuizen
R. M.
,
Singhal
A. B.
,
Mandeville
J. B.
,
Wu
O.
,
Halpern
E. F.
,
Finklestein
S. P.
,
Rosen
B. R.
, and
Lo
E. H.
, “
Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study
,”
J Neurosci
, vol.
23
, pp.
510
7
,
2003
.
10.
Schaechter
J. D.
,
Kraft
E.
,
Hilliard
T. S.
,
Dijkhuizen
R. M.
,
Benner
T.
,
Finklestein
S. P.
,
Rosen
B. R.
, and
Cramer
S. C.
, “
Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study
,”
Neurorehabil Neural Repair
, vol.
16
, pp.
326
38
,
2002
.
11.
Weiller
C.
, “
Imaging recovery from stroke
,”
Exp Brain Res
, vol.
123
, pp.
13
7
,
1998
.
12.
E. Burdet, R. Gassert, G. Gowrishankar, D. Chapuis, and H. Bleuler, “fMRI compatible haptic interfaces to investigate human motor control,” presented at 9th International Symposium on Experimental Robotics (ISER), 2004.
13.
Ku
J.
,
Mraz
R.
,
Baker
N.
,
Zakzanis
K. K.
,
Lee
J. H.
,
Kim
I. Y.
,
Kim
S. I.
, and
Graham
S. J.
, “
A data glove with tactile feedback for FMRI of virtual reality experiments
,”
Cyberpsychol Behav
, vol.
6
, pp.
497
508
,
2003
.
14.
W. M. Winslow, “Induced Fibrillation of Suspensions,” Journal of Applied Physics, vol. 20, 1949.
15.
Block
H.
and
Kelly
J. P.
, “
Electro-rheology
,”
Journal of Physics D: Applied Physics
, vol.
21
, pp.
1661
1677
,
1988
.
16.
Gast
A. P.
and
Zukoski
C. F.
, “
Electrorheological fluids as colloidal suspensions
,”
Advances in Colloid and Interface Science
, vol.
30
, pp.
153
202
,
1989
.
17.
Mavroidis
C.
, “
Development of Advanced Actuators Using Shape Memory Alloys and Electrorheological Fluids
,”
Research for Non-Destructive Evaluation
, Vol.
14
, No.
1
, pp.
1
32
,
2002
.
18.
G. C. Burdea, “Force and Touch Feedback for Virtual Reality,” John Wiley & Sons, 1996
19.
J. Melli-Huber, B. Weinberg, A. Fisch, J. Nikitczuk, C. Mavroidis, C. Wampler, “Electro-Rheological Fluidic Actuators for Haptic Vehicular Instrument Controls,” Proceedings of the Eleventh Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, March 22 and 23, 2003, Los Angeles, CA, pp. 262–267.
20.
J. Nikitczuk, B. Weinberg, and C. Mavroidis, “Rehabilitative Knee Orthosis Driven By Electro-Rheological Fluid Based Actuators,” Proceedings of the 2005 IEEE International Conference of Robotics and Automation, Barcelona, Spain, April 18–22, 2005.
21.
Firbank
M. J.
,
Coulthard
A.
,
Harrison
R. M.
,
Williams
E. D.
, “
A Comparison of Two Methods for Measuring the Signal to Noise Ratio on MR Images
,”
Phys Med Biol
,
1999
;
44
:
261
264
.
This content is only available via PDF.
You do not currently have access to this content.