Atomic force microscopes (AFM) can image and manipulate sample properties at the atomic scale. The non-contact mode of AFM offers unique advantages over other contemporary scanning probe techniques, especially when utilized for reliable measurements of soft samples (e.g., biological species). The distance between cantilever tip and sample surface is a time varying parameter even for a fixed sample height, and hence, difficult to identify. A remedy to this problem is to directly identify the sample height in order to generate high precision, atomic-resolution images. For this, the microcantilever is modeled by a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Since in most practical applications only the microcantilever deflection is accessible, this measurement is utilized to identify the sample height in each point. Using the proposed approach for identification of the sample height, the scanning speed can be increased significantly. Furthermore, for taking atomic-scale images of atomically flat samples, there is no need to use the feedback loop to achieve setpoint amplitude. Simulation results are provided to demonstrate the effectiveness of the approach and suggest the most suitable technique for the sample height identification.

1.
Jalili
N.
and
Laxminarayana
K.
,
2004
, “
A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences
,”
International Journal of Mechatronics
,
14
(
8
), pp.
907
945
.
2.
Goeken
M.
, and
Kempf
M.
,
1999
, “
Microstructural Properties of Super alloys Investigated by Nanoindentations in an Atomic Force Microscope
,”
Acta Mater.
,
47
(
3
), pp.
1043
1052
.
3.
Kempf
M.
,
Go¨ken
M.
, and
Vehoff
H.
,
1998
, “
Nanohardness Measurements for Studying Local Mechanical Properties of Metals
,”
Appl. Phys. A: Mater. Sci. Process.
,
66
, pp.
S843–S846
S843–S846
.
4.
Nagashima
N.
,
Matsuoka
S.
, and
Miyahara
K.
,
1996
, “
Nanoscopic Hardness Measurement by Atomic Force Microscope
,”
JSME International Journal, Series A: Mechanics and Material Engineering
,
39
(
3
), pp.
456
462
.
5.
Yamamoto
A.
,
Watanabe
A.
,
Tsubakino
H.
, and
Fukumoto
S.
,
2000
, “
AFM Observations of Microstructures of Deposited Magnesium on Magnesium Alloys
,”
Materials Science Forum
,
350
, pp.
241
246
.
6.
Miyahara
K.
,
Nagashima
N.
,
Ohmura
T.
, and
Matsuoka
S.
,
1999
, “
Evaluation of Mechanical Properties in Nanometer Scale Using AFM-Based Nanoindentation Tester
,”
Nanostruct. Mater.
,
12
(
5
), pp.
1049
1052
.
7.
Sundararajan
S.
, and
Bhushan
B.
,
2001
, “
Development of a Continuous Microscratch Technique in an Atomic Force Microscope and Its Application to Study Scratch Resistance of Ultrathin Hard Amorphous Carbon Coatings
,”
J. Mater. Res.
,
16
(
2
), pp.
437
445
.
8.
Chen
W.
,
Ahmed
H.
, and
Nakazoto
K.
,
1995
, “
Coulomb Blockade at 77 K in Nanoscale Metallic Islands in a Lateral Nanostructure
,”
Appl. Phys. Lett.
,
66
(
24
), p.
3383
3383
.
9.
Klein
D. L.
,
McEuen
P. L.
,
Katari
J. E. B.
,
Roth
R.
, and
Alivisatos
A. P.
,
1996
, “
Approach to Electrical Studies of Single Nanocrystals
,”
Appl. Phys. Lett.
,
68
(
18
), p.
2574
2574
.
10.
Bezryadin
A.
,
Dekker
C.
, and
Schmid
G.
,
1997
, “
Electrostatic Trapping of Single Conducting Nanoparticles Between Nanoelectrodes
,”
Appl. Phys. Lett.
,
71
(
9
), pp.
1273
1275
.
11.
Jalili
N.
,
Dadfarnia
M.
and
Dawson
D. M.
,
2004
A Fresh Insight into the Microcantilever-Sample Interaction Problem in Non-Contact Atomic Force Microscopy
,”
ASME Journal of Dynamic Systems, Measurements and Control
,
126
(
2
), pp.
327
335
.
12.
Kupnizky, J. “Nanostructures studied by AFM,” MS Thesis, Acta University.
13.
Deepak R. Sahoo, Abu Sebastian, and Murti V. Salapaka 2003 “Transient-signal-based sampledetection in atomic force microscopy,” Applied Physics Letters, 83 (26).
14.
Fang, Y., Feemster, M. G., Dawson, D. M. Jalili, N., “Nonlinear Control Techniques For the Atomic Force Microscope System,” Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002, New Orleans, LA, USA.
15.
Ashhab
M.
,
Salapaka
M.
,
Dahleh
M.
, and
Me-zic
I.
,
1999
, “
Dynamical Analysis and Control of Microcantilevers
,”
Automatica
,
35
, pp.
1663
1670
.
16.
Parlitz
U.
,
Junge
L.
and
Kocarev
L.
,
1996
, “
Synchronization-based parameter estimation from time series
,”
Phys. Rev. E
,
54
, pp.
6253
6259
.
17.
Parlitz
U.
,
1996
, “
Estimating model parameters from time series by autosynchronization
,”
Phys. Rev. Lett.
,
76
, pp.
1232
1235
.
18.
Maybhate, A., and Amritkar, R. E., “Use of synchronization and adaptive control in parameter identification from time series,” a preprint available at http://xxx.lanl.gov/abs/chao-dyn/9804005.
19.
Pecora
L.
and
Carroll
T.
,
1990
, “
Synchronization of chaotic systems
,”
Phys. Rev. Lett.
,
64
, pp.
821
824
.
This content is only available via PDF.
You do not currently have access to this content.