The paper proposes a finite series expansion to approximate general nonlinear dynamic models to arbitrary accuracy. The method produces an approximation of nonlinear dynamics in the form of an aggregation of linear models, weighted by unimodal basis functions, and results in a linear growth bound on the approximation error. Furthermore, the paper demonstrates that the proposed approximation satisfies the modeling assumptions for analysis based on linear matrix inequalities and hence widens the applicability of these techniques to the area of nonlinear control.

1.
R. Liu, R. Saeks, and R. J. Leake, “On global linearization,” in SIAM-AMS, 1969, pp. 93–102.
2.
Wang
L. X.
and
Mendel
J. M.
, “
Fuzzy basis functions, universal approximators and orthogonal least-squares learning
,”
IEEE Transactions on Neural Networks
, vol.
3
, pp.
807
814
,
1992
.
3.
Chen
S.
,
Cowan
C. F. N.
, and
Grant
P. M.
, “
Orthogonal least squares learning algorithms for radial basis function networks
,”
IEEE Transactions on Neural Networks
, vol.
2
, no.
2
, pp.
302
309
,
1991
.
4.
Chen
S.
,
Billings
S. A.
, and
Luo
W.
, “
Orthogonal least squares methods and their application to non-linear system identification
,”
International Journal of Control
, vol.
50
, no.
5
, pp.
1873
1896
,
1989
.
5.
Leontaritis
I. J.
and
Billings
S. A.
, “
Input-output parametric models for non-linear systems, Part I: deterministic non-linear systems
,”
International Journal of Control
, vol.
41
, no.
2
, pp.
303
328
,
1985
.
6.
Leontaritis
I. J.
and
Billings
S. A.
, “
Input-output parametric models for non-linear systems, Part II: stochastic non-linear systems
,”
International Journal of Control
, vol.
41
, no.
2
, pp.
329
344
,
1985
.
7.
Desrochers
A.
and
Mohseni
S.
, “
On determining the structure of a non-linear system
,”
International Journal of Control
, vol.
40
, no.
5
, pp.
923
938
,
1984
.
8.
Johansen
T.
and
Foss
B. A.
, “
A NARMAX model representation for adaptive control based on local models
,”
Modeling, Identification and Control
Vol.
13
, no.
1
, pp.
25
39
,
1992
.
9.
Johansen
T.
and
Foss
B. A.
, “
Constructing NARMAX models using ARMAX models
,”
International Journal of Control
, vol.
58
, no.
5
, pp.
1125
1153
,
1993
.
10.
Johansen
T.
and
Foss
B. A.
, “
Identification of non-linear system structure and parameters using regime decomposition
,”
Automatica
, vol.
31
, no.
2
, pp.
321
326
,
1995
.
11.
K. Kiriakidis, “On the expansion of nonlinear models using bell-shaped basis functions,” in ASME International Mechanical Engineering Congress and Exposition, Washington, DC, Nov. 2003.
12.
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
13.
M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall International Editions, 1993.
14.
P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox. Natick, MA: The MathWorks, Inc., 1995.
This content is only available via PDF.
You do not currently have access to this content.