The paper proposes a finite series expansion to approximate general nonlinear dynamic models to arbitrary accuracy. The method produces an approximation of nonlinear dynamics in the form of an aggregation of linear models, weighted by unimodal basis functions, and results in a linear growth bound on the approximation error. Furthermore, the paper demonstrates that the proposed approximation satisfies the modeling assumptions for analysis based on linear matrix inequalities and hence widens the applicability of these techniques to the area of nonlinear control.
Volume Subject Area:
Dynamic Systems and Technology
1.
R. Liu, R. Saeks, and R. J. Leake, “On global linearization,” in SIAM-AMS, 1969, pp. 93–102.
2.
Wang
L. X.
Mendel
J. M.
Fuzzy basis functions, universal approximators and orthogonal least-squares learning
,” IEEE Transactions on Neural Networks
, vol. 3
, pp. 807
–814
, 1992
.3.
Chen
S.
Cowan
C. F. N.
Grant
P. M.
Orthogonal least squares learning algorithms for radial basis function networks
,” IEEE Transactions on Neural Networks
, vol. 2
, no. 2
, pp. 302
–309
, 1991
.4.
Chen
S.
Billings
S. A.
Luo
W.
Orthogonal least squares methods and their application to non-linear system identification
,” International Journal of Control
, vol. 50
, no. 5
, pp. 1873
–1896
, 1989
.5.
Leontaritis
I. J.
Billings
S. A.
Input-output parametric models for non-linear systems, Part I: deterministic non-linear systems
,” International Journal of Control
, vol. 41
, no. 2
, pp. 303
–328
, 1985
.6.
Leontaritis
I. J.
Billings
S. A.
Input-output parametric models for non-linear systems, Part II: stochastic non-linear systems
,” International Journal of Control
, vol. 41
, no. 2
, pp. 329
–344
, 1985
.7.
Desrochers
A.
Mohseni
S.
On determining the structure of a non-linear system
,” International Journal of Control
, vol. 40
, no. 5
, pp. 923
–938
, 1984
.8.
Johansen
T.
Foss
B. A.
A NARMAX model representation for adaptive control based on local models
,” Modeling, Identification and Control
Vol. 13
, no. 1
, pp. 25
–39
, 1992
.9.
Johansen
T.
Foss
B. A.
Constructing NARMAX models using ARMAX models
,” International Journal of Control
, vol. 58
, no. 5
, pp. 1125
–1153
, 1993
.10.
Johansen
T.
Foss
B. A.
Identification of non-linear system structure and parameters using regime decomposition
,” Automatica
, vol. 31
, no. 2
, pp. 321
–326
, 1995
.11.
K. Kiriakidis, “On the expansion of nonlinear models using bell-shaped basis functions,” in ASME International Mechanical Engineering Congress and Exposition, Washington, DC, Nov. 2003.
12.
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
13.
M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall International Editions, 1993.
14.
P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox. Natick, MA: The MathWorks, Inc., 1995.
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.