The fillet welds are conventionally calculated to shear stress in the weakest section: the throat area of the weld. This consideration is a simplification for any fillet weld. Nevertheless, this procedure is internationally accepted as a justified procedure, mainly, for the simplification that makes the calculation of the welded joints of an engineering construction an easy procedure. This premise has motivated that different authors try to obtain calculation expressions for different cases that are presented in the practice, looking to facilitate the work of the industry technicians and engineers in charge of carrying out the calculation of these unions, however, in this pawn they don’t always use the most appropriate methods settled down by the Mechanics of the Materials introducing inaccuracies in these expressions. The Fracture Mechanics has outlined a new necessity: the development of methods of predicting defects that could exist in the welding cords. In order to do that, it is required to determine the stresses that arise in the welding with a superior accuracy. In this paper, the Theory of the Torsion of Thin Walls Profiles is applied to the calculation of the torsion shear stresses of the fillet weld joints. New calculation expressions are obtained that belong together better than the classic expressions with relationship to the values obtained by the Finite Elements Method.

1.
Beer F.P, Johnston E.R. Meca´nica de Materiales. 2a Edicio´n. Colombia, Editorial: Mc Graw-Hill, 1993.–738 p.
2.
Birger I.A., Shorr B.F., Shneiderovich R.M. Ca´lculo de Resistencia de Piezas de Ma´quinas. Moscu´: Editorial Mashinostroenie, 1966.– 616 p.
3.
Dobrovolski V. Elementos de Ma´quinas. Moscu´: Editorial MIR, 1970.–692 p.
4.
Faires V.M. Disen˜o de Elementos de Ma´quinas. Me´xico: UTEHA, 1985.–802p.
5.
Feodosiev V.I. Resistencia de Materiales. Moscu´: MIR, 1985.–583 p.
6.
Ferna´ndez, G. Resistencia de Materiales. La Habana: Pueblo y Educacio´n, 1983.–511p.
7.
Fitzgerald F. Meca´nica de Materiales. Me´xico: Alfaomega. 1996.–560p.
8.
Fogiel M. Problem Solver in Strength of Materials and Mechanics of Solids. New Jersey: REA, 1988. – 1140 p.
9.
Hall A, Holowenko A, Lauglhin H. Disen˜o de Ma´quinas. Madrid: Dossat, 1971.–344p.
10.
Iusilievich G.V. Elementos de Ma´quinas. Moscu´: Mashinostroienie, 1988.–388p
11.
Ivanov, M. N. Elementos de Ma´quinas. Moscu´: Vischaya Schkola, 1991.–386p.
12.
Miroliubov I. Problemas de Resistencia de Materiales. Moscu´:MIR 1985.–500p.
13.
Mott R.L. Applied Strength of Materials. New Jersey:Prentice-Hall, 1990.–559 p.
14.
Mott R.L. Resistencia de Materiales Aplicada. Me´xico: Editorial Prentice- Hall Hispanoamericana. 1996.–640 p.
15.
Mukanov K. Design of Metal Structures. Moscu´: Editorial MIR, 1968.–517p
16.
Olsen G.A. Elements of Mechanics of Materials. La Habana: Asociacio´n de Estudiantes, 1962.–536 p.
17.
Pisarenko G.S., Yakovlev A.P., Matveev V.K. Manual de Resistencia de Materiales. Moscu´: MIR, 1989,–693 p.
18.
Reshetov, D. Elementos de Ma´quinas. La Habana: Pueblo y Educacio´n, 1985.–830p.
19.
Schimpke P., Horn H.A., Ruge J. Tratado General de Soldadura. Proyecto y ca´lculo de construcciones soldadas. Ciudad de La Habana: Pueblo y Educacio´n, 1980.–394 p.
20.
Shigley, J. E.; Mitchell, L. D. Disen˜o en Ingenieri´a Meca´nica. Me´xico: McGraw Hill, 1985. – 915 p.
21.
Shigley, J.E; Mischkie, C., Disen˜o en Ingenieri´a Meca´nica. Me´xico: McGraw Hill Interamericana. 2001.–943 p.
22.
Spiegel L., Limbrunner G.F. Applied Statics and Strength of Materials. New Jersey: Prentice Hall, 1999. – 644 p.
23.
Timoshenko S. Resistencia de Materiales. Moscu´: Nauka, 1965.–480p.
24.
Volmir A. Problemas de Resistencia de Materiales. Moscu´; MIR, 1986. – 477 p.
25.
Wilson Ch. Computer Integred Machine Design. New Jersey: Prentice Hall, 1997. – 646 p.
This content is only available via PDF.
You do not currently have access to this content.