The focus of this paper is on the nonlinear dynamics and control of the scan process in noncontacting atomic force microscopy. An initial-boundary-value problem is consistently formulated to include both nonlinear dynamics of a microcantilever with a localized atomic interaction force for the surface it is mapping, and a horizontal boundary condition for a constant scan speed and its control. The model considered is obtained using the extended Hamilton’s principle which yields two partial differential equations for the combined horizontal and vertical motions. Isolation of a Lagrange multiplier describing the microbeam fixed length enables construction of a modified equation of motion which is reduced to a single mode dynamical system via Galerkin’s method. The analysis includes a numerical study of the strongly nonlinear system leading to a stability map describing an escape bifurcation threshold where the tip, at the free end of the microbeam, ‘jumps-to-contact’ with the sample. Results include periodic ultrasubharmonic and quasiperiodic solutions corresponding to primary and secondary resonances.

1.
Binning
G.
,
Quate
C. F.
, and
Gerber
C.
,
Physical Review Letters
,
56
(
9
),
930
936
, (
1986
).
2.
Giessible
F. J.
,
Reviews of Modern Physics
,
75
(
3
),
949
983
(
2003
).
3.
D. Sarid, Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces, Oxford, New York (1994).
4.
A. S. Paulo and R. Garcia, Physical Review B 66, (2002).
5.
Durig
U.
,
Zuger
O.
and
Stalder
A.
,
Journal of Applied Physics
,
72
(
5
),
1778
1798
(
1992
).
6.
Mertz
J.
,
Marti
O.
and
Mlynek
J.
,
Applied Physics Letters
,
62
(
19
),
2344
2346
(
1993
).
7.
Ashhab
M.
,
Salapaka
V.
,
Dahleh
M.
, and
Mezic
I.
,
Automatica
,
35
,
1663
1670
(
1999
).
8.
Perez
H.
,
Zou
Q.
and
Devasia
S.
,
ASME Journal of Dynamics Systems Measurement and Control
,
126
,
187
197
(
2004
).
9.
S.C. Minne, S.R. Manalis and C.F. Quate, Bringing scanning probe microscopy up to speed, Kluwer, Boston, (1999).
10.
Thompson
J. M. T.
,
Proceedings of the Royal Society of London A
,
421
,
195
225
(
1989
).
11.
O. Gottlieb and A.R. Champneys, in IUTAM Chaotic Dynamics and Control of Systems and Processes in Mechanics, eds Rega and Vestroni, 117–126, (2004).
12.
Erlandsson
R.
and
Olsson
L.
,
Appl. Phys. A
,
66
,
S879–S883
S879–S883
(
1998
).
13.
Couturier
G.
,
Nony
L.
,
Boisgard
R.
and
Aime
J. P.
’,
Journal of Applied Physics
,
91
(
4
),
2537
2543
(
2002
).
14.
Stark
R. W.
and
Heckl
W. M.
,
Surface Science
,
457
,
219
228
(
2000
).
15.
Rodriguez
T. R.
and
Garcia
R.
,
Appl. Phys. Lett
,
80
(
9
),
1646
1648
(
2002
).
16.
Turner
J. A.
,
Hirsekorn
S.
,
Rabe
U.
and
Arnold
W.
,
Appl. Phys. Lett.
,
82
(
3
),
966
979
(
1997
).
17.
Turner
J. A.
,
J. Sound and Vibration
,
275
(
1
),
177
191
(
2004
).
18.
Wolf
K.
and
Gottlieb
O.
,
Journal of Applied Physics
,
91
(
7
),
4701
4709
(
2002
).
19.
Crespo da Silva
M. C.
and
Glynn
C. C.
,
J. Struct. Mechanics
,
6
(
4
),
437
461
(
1978
).
20.
J. Israelachvili, Intermolecular and Surface Forces, Academic Press, London (1992).
21.
Sarid
D.
,
Ruskell
T. G.
,
Workman
R. K.
and
Chen
D.
,
Journal of Vacuum Science and Technology B
,
14
(
2
),
864
867
(
1996
).
22.
Nayfeh
A. H.
and
Pai
P. F.
,
International Journal of Nonlinear Mechanics
,
24
,
139
158
, (
1989
).
23.
Crespo da Silva
M. C.
,
Applied Mechanics Reviews
,
44
(
11
),
51
59
(
1991
).
24.
L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, Boston, (2001).
25.
J. Guckenheimer and P.J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, (1983).
26.
A.H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics, Wiley, New York, (1995).
27.
Maris
J. P.
,
Piednoir
A.
,
Zambelli
T.
,
Bouju
X.
and
Gauthier
S.
,
Nanotechnology
,
14
,
1036
1042
(
2003
).
28.
Albrecht
T. R.
,
Grutter
P.
,
Horne
D.
and
Rugar
D.
,
Journal of Applied Physics
,
69
(
2
),
668
673
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.