The feedback perspective of dynamic AFM provides a powerful tool to investigate the non-linear system dynamics from a system theoretic point of view. Including the higher order dynamics of the extended cantilever beam in the model the contact resonances can be reproduced faithfully without the need to solve the partial differential equation of motion directly. The investigation of the non-linear dynamics provides valuable insight into the generation of higher harmonics in dynamic AFM. However, the light lever detection scheme is widely used in dynamic AFM. This means that — strictly speaking — the tip-deflection is not a measurable quantity: the local deflection angle is measured but not the deflection itself. Additionally, time-delays may be introduced into the system influencing the dynamic behavior. Apart from system inherent time delays, a delayed force feedback is often used in order manipulate the system’s resonance characteristics (quality factor). Such an active control of the oscillatory behavior of the cantilever used in atomic force microscopy (AFM) allows one to tune the quality factor to purpose. For experiments requiring a high force sensitivity an enhancement of the quality factor is desirable whereas in time critical experiments additional damping may be needed. In order to control the quality factor a feedback signal is used that approximates the time derivative of the system state within the bandwidth of interest.

1.
Garci´a
R.
and
Pe´rez
R.
, “
Dynamic atomic force microscopy methods
,”
Surf. Sci. Rep.
, vol.
47
, pp.
197
301
,
2002
.
2.
Zhong
Q.
,
Inniss
D.
,
Kjoller
K.
, and
Elings
V. B.
, “
Fractured polymer silica fiber surface studied by tapping-mode atomic-force microscopy
,”
Surf. Sci.
, vol.
290
, pp.
L688–L692
L688–L692
,
1993
.
3.
Sulchek
T.
,
Hsieh
R.
,
Adams
J. D.
,
Yaralioglu
G. G.
,
Minne
S. C.
,
Quate
C. F.
,
Cleveland
J. P.
,
Atalar
A.
, and
Adderton
D. M.
, “
High-speed tapping mode imaging with active Q control for atomic force microscopy
,”
Appl. Phys. Lett.
, vol.
76
, pp.
1473
1475
,
2000
.
4.
Mertz
J.
,
Marti
O.
, and
Mlynek
J.
, “
Regulation of a microcantilever response by force feedback
,”
Appl. Phys. Lett.
, vol.
62
, pp.
2344
2346
,
1993
.
5.
Anczykowski
B.
,
Cleveland
J. P.
,
Krueger
D.
,
Elings
V.
, and
Fuchs
H.
, “
Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation
,”
Appl. Phys. A
, vol.
66
, pp.
885
9
,
1998
.
6.
Humphris
A. D. L.
,
Round
A. N.
, and
Miles
M. J.
, “
Enhanced imaging of DNA via active quality factor control
,”
Surface Science
, vol.
491
, pp.
468
72
,
2001
.
7.
Humphris
A. D. L.
,
Tamayo
J.
, and
Miles
M. J.
, “
Active quality factor control in liquids for force spectroscopy
,”
Langmuir
, vol.
16
, pp.
7891
4
,
2000
.
8.
Ho¨lscher
H.
, “
Q-controlled dynamic force spectroscopy
,”
Surface Science
, vol.
515
, pp.
517
22
,
2002
.
9.
Tamayo
J.
,
Alvarez
M.
, and
Lechuga
L. M.
, “
Digital tuning of the quality factor of micromechanical resonant biological detectors
,”
Sensor Actuat B-Chem
, vol.
89
, pp.
33
39
,
2003
.
10.
Jaggi
R. D.
,
Franco-Obregon
A.
,
Studerus
P.
, and
Ensslin
K.
, “
Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode
,”
Appl. Phys. Lett.
, vol.
79
, pp.
135
137
,
2001
.
11.
Tamayo
J.
,
Humphris
A. D. L.
,
Owen
R. J.
, and
Miles
M. J.
, “
High-Q dynamic force microscopy in liquid and its application to living cells
,”
Biophys. J.
, vol.
81
, pp.
526
37
,
2001
.
12.
Rodri´guez
T. R.
and
Garcia
R.
, “
Theory of Q control in atomic force microscopy
,”
Appl. Phys. Lett.
, vol.
82
, pp.
4821
3
,
2003
.
13.
Tamayo
J.
and
Lechuga
L. M.
, “
Decrease of the resonance bandwidth of micromechanical oscillators by phase control of the driving force
,”
Appl. Phys. Lett.
, vol.
82
, pp.
2919
2921
,
2003
.
14.
J. Argyris and H.-P. Mlejnek, Die Methode der finiten Elemente, vol. III. Braunschweig/Wiesbaden: Vieweg, 1988.
15.
M. R. Hatch, Vibration simulation using MATLAB and ANSYS. Boca Raton: Chapman & Hall/CRC, 2001.
16.
R. W. Clough and J. Penzien, Dynamics of structures, 2nd ed. Singapore: McGraw-Hill, 1993.
17.
A. Sebastian, M. V. Salapaka, D. J. Chen, and J. P. Cleveland, “Harmonic analysis based modeling of tapping-mode AFM,” presented at Amer. Control Conf. (ACC), San Diego, CA, USA, 1999.
18.
Stark
M.
,
Stark
R. W.
,
Heckl
W. M.
, and
Guckenberger
R.
, “
Inverting dynamic force microscopy: From signals to time-resolved interaction forces
,”
Proc. Natl. Acad. Sci. USA
, vol.
99
, pp.
8473
8478
,
2002
.
19.
Stark
R. W.
, “
Spectroscopy of higher harmonics in dynamic atomic force microscopy
,”
Nanotechnology
, vol.
15
, pp.
347
51
,
2004
.
20.
Stark
R. W.
,
Schitter
G.
,
Stark
M.
,
Guckenberger
R.
, and
Stemmer
A.
, “
State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy
,”
Phys. Rev. B
, vol.
69
, pp.
085412
085412
,
2004
.
21.
Fleming
A. J.
and
Moheimani
S. O. Reza
, “
Spatial system identification of a simply supported beam and a trapezoidal cantilever plate
,”
IEEE Trans. Contr. Sys. Technol.
, vol.
11
, pp.
726
36
,
2003
.
22.
Derjaguin
B. V.
,
Muller
V. M.
, and
Toporov Yu
P.
, “
Effect of contact deformations on the adhesion of particles
,”
J. Coll. Interf. Sci.
, vol.
53
, pp.
314
26
,
1975
.
23.
Garcia
R.
and
San Paulo
A.
, “
Dynamics of a vibrating tip near or in intermittent contact with a surface
,”
Phys. Rev. B
, vol.
61
, pp.
13381
4
,
2000
.
24.
Gannepalli
A.
and
Mallapragada
S. K.
, “
Molecular dynamics studies of plastic deformation during silicon nanoindentation
,”
Nanotechnology
, vol.
12
, pp.
250
7
,
2001
.
25.
Haefliger
D.
,
Plitzko
J. M.
, and
Hillenbrand
R.
, “
Contrast and scattering efficiency of scattering-type near-field optical probes
,”
Appl. Phys. Lett.
, vol.
85
, pp.
4466
4468
,
2004
.
26.
Stark
R. W.
,
Schitter
G.
, and
Stemmer
A.
, “
Tuning the interaction forces in tapping mode atomic force microscopy
,”
Phys. Rev. B
, vol.
68
, pp.
85401
1
,
2003
.
27.
Lee
S. I.
,
Howel
S. W.
,
Raman
A.
, and
Reifenberger
R.
, “
Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment
,”
Phys. Rev. B
, vol.
66
, pp.
115409
115409
,
2002
.
This content is only available via PDF.
You do not currently have access to this content.