In the last decade, Lead Zirconate Titanate Oxide (PZT) thin-film actuators have received increasing attention because of their high frequency bandwidth, large actuation strength, fast response, and small size. The PZT film thickness is usually less than several microns as opposed to hundreds of microns for bulk PZT patches that are commercially available. As a result, PZT thin-film actuators pose unique vibration issues that do not appear in actuators with bulk PZT. Two major issues affecting actuator performance are the frequency bandwidth and the resonance amplitude. As an electromechanical device, a PZT thin-film actuator’s bandwidth and resonance amplitude depend not only on the lowest natural frequency ωn of the actuator’s mechanical structure but also on the corner frequency ωc of the actuator’s RC-circuit. For PZT thin-film actuators, the small film thickness implies large film capacitance C and small ωc. When the size of the actuator decreases, frequency ωn increases dramatically. As a result, improper design of PZT thin-film actuators could lead to ωc ≪ ωn substantially reducing the actuator bandwidth and the resonance amplitude. This paper is to demonstrate this phenomenon through calibrated experiments. In the experiments, frequency response functions of a fixed-fixed silicon beam with a 1-μm thick PZT film are measured through use of a laser Doppler vibrometer and a spectrum analyzer. The silicon beam has multiple electrodes with a wide range of resistance R and corner frequency ωc. The experimental results confirm that the actuator bandwidth and resonance amplitude are substantially reduced when ωc ≪ ωn.

1.
Kueppers
H.
,
Leuerer
T.
,
Schnakenberg
U.
,
Mokwa
W.
,
Hoffmann
M.
,
Schneller
T.
,
Boettger
U.
,
Waser
R.
,
PZT thin films for piezoelectric microactuator applications
,
Sensors and Actuator A
,
97–98
(
2002
)
690
684
.
2.
Shibata
T.
,
Unno
K.
,
Makino
E.
, and
Shimada
S.
,
Fabrication and characterization of diamond AFM probe integrated with PZT thin film sensor and actuator
,
Sensors and Actuators A
,
114
(
2004
)
398
405
.
3.
Flynn
A. M.
,
Tavrow
L. S.
,
Bart
S. F.
,
Brooks
R. A.
,
Ehrlich
D. J.
,
Udayakumar
K. R.
, and
Cross
L. E.
,
Piezoelectric micromotors for microrobots
,
Journal of Microelectromechanical Systems
,
1
(
1992
)
44
51
.
4.
Muralt
P.
,
Kohli
M.
,
Maeder
T.
,
Kholkin
A.
,
Brooks
K.
,
Setter
N.
, and
Luthier
R.
,
Fabrication and characterization of PZT thin-film vibrators for micromotors
,
Sensors and Actuators A
,
48
(
1995
)
157
165
.
5.
Muralt
P.
,
Kholkin
A.
,
Kohli
M.
, and
Maeder
T.
,
Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions
,
Sensors and Actuators A
,
53
(
1996
)
398
404
.
6.
Dubois
M.
and
Muralt
P.
,
PZT thin film actuated elastic fin micromotor
,
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
,
45
(
1998
)
1169
1177
.
7.
H. Goto, Two-dimensional micro optical scanner excited by PZT thin film microactuator, Proceedings of SPIE Conference on Optoelectronic Materials and Devices, Vol. 3419 (1998) 227–235.
8.
Schroth
A.
,
Lee
C.
,
Matsumoto
S.
, and
Maeda
R.
,
Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners
,
Sensors and Actuators A
,
73
(
1999
)
1440152
1440152
.
9.
Tsaur
J.
,
Zhang
L.
,
Maeda
R.
,
Matsumoto
S.
, and
Khumpuang
S.
,
Design and fabrication of 1D and 2D micro scanners actuated by double layered lead zirconate titanate (PZT) bimorph beams
,
Jpn. J. Appl. Phys.
,
41
(
2002
)
4321
4326
.
10.
Gross
S. J.
,
Tadigadapa
S.
,
Jackson
T. N.
,
Trolier-McKinstry
S.
, and
Zhang
Q. Q.
,
Lead-zirconate-titanate-based piezoelectric micromachined switch
,
Applied Physics Letters
,
83
(
2003
)
174
176
11.
Zhang
Q. Q.
,
Gross
S. J.
,
Tadigadapa
S.
,
Jackson
T. N.
,
Djuth
F. T.
, and
Trolier-McKinstry
S.
,
Lead zirconate titanate films for d33 mode cantilever actuators
,
Sensors and Actuators A
,
105
(
2003
)
91
97
.
12.
Duval
F. F. C.
,
Dorey
R. A.
,
Wright
R. W.
,
Huang
Z.
, and
Whatmore
R. W.
,
Fabrication and modeling of high-frequency PZT composite thick film membrane resonators
,
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
,
51
(
2004
)
1255
1261
.
13.
H. Kuwajima and K. Matsuoka, Thin-film piezoelectric DSA for HDD, 38 (2002) 2186–2188.
14.
Tagawa
N.
,
Kitamura
K.
, and
Mori
A.
,
Design and fabrication of MEMS-based active slider using double-layered composite PZT thin film in hard disk drives
,
IEEE Transactions on Magnetics
,
39
(
2003
)
926
931
.
15.
Suzuki
K.
,
Maeda
R.
,
Chu
J.
,
Kato
T.
, and
Kurita
M.
,
An active head slider using a piezoelectric cantilever for in-situ flying-height control
,
IEEE Trans Magn
,
39
(
2003
)
826
831
.
16.
Krulevitch
P.
,
Lee
A. P.
,
Ramsey
P. B.
,
Trevino
J. C.
,
Hamilton
J.
, and
Northrup
M. A.
,
Thin film shape memory alloy microactuators
,
J Microelectromech
,
5
(
1996
)
270
282
.
17.
Hsu
Y. C.
,
Wu
C. C.
,
Lee
C. C.
,
Cao
G. Z.
, and
Shen
I. Y.
,
2004
, “
Demonstration and Characterization of PZT Thin-Film Sensors and Actuators for Meso- and Micro-Structures
,”
Sensors and Actuators A—Physical
, Vol.
116
, No.
3
, pp.
367
377
.
This content is only available via PDF.
You do not currently have access to this content.