Although piezoelectric actuators have been widely used in active control, the hysteresis nonlinearity and the non-minimum phase characteristic could potentially deteriorate the system performance, especially in high precision control applications under disturbance. In this study, a resistance/inductance circuit is connected to the piezoelectric actuator to form an actuator network. With the actuator dynamics, the system model can be directly cast into the state-space whereas the system nonlinearity appears as explicit functions of the state variables. We then develop an integral continuous sliding mode control scheme to tackle the hysteresis nonlinearity and the disturbance issues. Instead of inverse hysteresis cancellation which might not be reliable due to the measurement noise, a direct piezoelectric hysteresis compensation can be achieved using this control strategy. The newly developed control scheme combines the advantages of both integral control and continuous sliding mode control with cubic state feedback. Not only can the control action react efficiently and effectively for the non-minimum phase response, but also, a zero steady state tracking error is guaranteed. Detailed analysis and case studies demonstrate that this new methodology can lead to improved tracking control precision, enhanced control robustness, and smoother control action.

1.
Devonshire
A. F.
,
1954
, “
Theory of ferroelectrics
,”
Advances in Physics
, Vol.
3
, No.
10
, pp.
85
130
.
2.
King
T. G.
,
Preston
M. E.
,
Murphy
B. J. M.
, and
Cannel
D. S.
,
1990
, “
Piezoelectric ceramic actuators: a review of machinery applications
,”
Precision Engineering
,
12
(
3
), pp.
131
136
.
3.
Mayergoyz, I., 1991, Mathematical models of hysteresis, New York: Springer-Verlag.
4.
Ge
P.
, and
Jouaneh
M.
,
1995
, “
Modeling hysteresis in piezoceramic actuators
,”
Precision Engineering
,
17
(
3
), pp.
211
221
.
5.
Ge
P.
, and
Jouaneh
M.
,
1997
, “
Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators
,”
Precision Engineering
,
20
(
3
), pp.
99
111
.
6.
Goldfarb
M.
, and
Celanovic
N.
,
1997
, “
A lumped parameter electrochemical model for describing the nonlinear behavior of piezoelectric actuators
,”
ASME Journal of Dynamic Systems, Measurement, and Control
,
119
, pp.
478
485
.
7.
Goldfarb
M.
, and
Celanovic
N.
,
1997
, “
Modeling piezoelectric stack actuator for control of micromanipulation
,”
IEEE Control System Magazine
,
17
(
3
), pp.
69
79
.
8.
Lee
S.-H.
, and
Royston
T. J.
,
2000
, “
Modeling piezoceramic transducer hysteresis in the structural vibration control problem
,”
Journal of Acoustic Society of America
,
108
(
6
), pp.
2843
2855
.
9.
Chonan, S., Jiang. Z., and Yamamoto, T., 1996, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” Journal of Intelligent Material Systems and Structures, pp. 150–156.
10.
Tsai
M.-S.
, and
Chen
J.-S.
,
2003
, “
Robust tracking control of a piezoactuator using a new approximate hysteresis model
,”
ASME Journal of Dynamic Systems, Measurement, and Control
,
125
, pp.
96
102
.
11.
Ge
P.
, and
Jouaneh
M.
,
1996
, “
Tracking control of a piezoceramic actuator
,”
IEEE Transactions on Control Systems Technology
,
4
, pp.
209
216
.
12.
Main
J. A.
and
Garcia
E.
,
1997
, “
Piezoelectric stack actuators and control system design: strategies and pitfalls
,”
Journal of Guidance, Control, and Dynamics
,
20
, pp.
479
485
.
13.
Kung
Y.-S.
, and
Fung
R.-F.
,
2004
, “
Precision control of a piezoceramic actuator using neutral networks
,”
ASME Journal of Dynamic Systems, Measurement, and Control
,
126
, pp.
235
238
.
14.
Croft
D.
, and
Devasia
S.
,
1998
, “
Hysteresis and vibration compensation for piezoactuators
,”
Journal of Guidance, Control, and Dynamics
,
21
, pp.
710
717
.
15.
Choi
G. S.
,
Lim
Y. A.
, and
Choi
G. H.
,
2002
, “
Tracking position control of piezoelectric actuators for periodic reference inputs
,”
Mechatronics
,
12
, pp.
669
684
.
16.
Chang
T.
, and
Sun
X.
,
2001
, “
Analysis and control of monolithic piezoelectric nano-actuator
,”
IEEE Transactions on Control Systems Technology
,
9
(
1
), pp.
69
75
.
17.
Lee
S.-H.
,
Ozer
M. B.
, and
Royston
T. J.
,
2002
, “
Piezoceramic hysteresis in the adaptive structural vibration control problem
,”
Journal of Intelligent Material Systems and Structures
,
13
, pp.
117
124
.
18.
Tang
J.
and
Wang
K. W.
,
2001
, “
Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement
,”
Smart Materials and Structures
,
10
, pp.
794
806
.
19.
Zhou
F.
and
Fisher
D. G.
,
1992
, “
Continuous sliding mode control
,”
International Journal of Control
,
55
(
2
), pp.
313
327
.
20.
Chern
T.-L.
, and
Wu
Y.-C.
,
1991
, “
Design of integral variable structure controller and application to electrohydraulic velocity servosystems
,”
IEE Proceedings-D
,
138
(
5
), pp.
439
444
.
21.
Chen
P.
and
Montgomery
S.
,
1980
, “
A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity
,”
Ferroelectrics
,
23
, pp.
199
207
.
22.
Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society 1987, “An American National Standard: IEEE Standard on Piezoelectricity,” The Institute of Electrical and Electronics Engineers, ANSI/IEEE Std 176-1987, New York.
23.
Main
J. A.
and
Garcia
E.
,
1997
, “
Design impact of piezoelectric actuator nonlinearities
,”
Journal of Guidance, Control, and Dynamics
,
20
, pp.
327
332
.
24.
Main
J. A.
,
Garcia
E.
, and
Newton
D. V.
,
1995
, “
Precision position control of piezoelectric actuators using charge feedback
,”
Journal of Guidance, Control, and Dynamics
,
18
, pp.
1068
1073
.
25.
Damjanovic
D.
,
1997
, “
Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics
,”
Journal of Applied Physics
,
82
, pp.
1788
1797
.
26.
Taylor
D. V.
and
Damjanovic
D.
,
1997
, “
Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields
,”
Journal of Applied Physics
,
82
, pp.
1973
1975
.
27.
Damjanovic
D.
and
Newnham
R. E.
,
1992
, “
Electrostrictive and piezoelectric materials for actuator applications
,”
Journal of Intelligent Material Systems and Structures
,
3
, pp.
190
208
.
28.
Tsai
M. S.
, and
Wang
K. W.
,
1999
, “
On the structural damping characteristic of active piezoelectric actuators with passive shunt
,”
Journal of Sound and Vibration
,
221
(
1
), pp.
1
22
.
29.
Hung
J. Y.
,
Gao
W.
, and
Hung
J. C.
,
1993
, “
Variable structural control: a survey
,”
IEEE Transactions on Industrial Electronics
,
40
(
1
), pp.
2
22
.
30.
Utkin
V. I.
,
1993
, “
Sliding mode control design principle and applications to electrical drives
,”
IEEE Transactions on Industrial Electronics
,
40
(
1
), pp.
23
36
.
31.
Cheng
C.-C.
, and
Liu
I.-M.
,
1999
, “
Design of MIMO integral variable structure controllers
,”
Journal of The Franklin Institute
,
336
, pp.
1119
1134
.
32.
Davison
D. J.
,
Goldenberg
A.
,
1975
, “
Robust control of general servomechanism problem: the servo compensator
,”
Automatica
,
11
, pp.
461
471
.
This content is only available via PDF.
You do not currently have access to this content.