Ab initio simulations on Grotthuss mechanism have been carried out. Using the simulation results together with the existing experimental data, all the popular propositions for Grotthuss mechanism, including the one recently proposed by Noam [1], have been checked. Combining with the charge distribution calculation and the movement of the positive charge center inside the protonated water cluster during the proton diffusion process, only one mechanism is shown probable, while all the other proposed mechanisms are excluded. According to this probable mechanism, the high mobility of proton inside water is caused by the high diffusion rate of H5O2+, while the diffusion of H5O2+ is mainly induced by the thermal movement of water molecules at the second solvation shell of H5O2+ cation and the Zundel polarization inside the cation ion. Furthermore, the external field and thermo-dynamic effects play important roles during the transport process by affecting the reorientation of water molecules at the neighborhood of the second solvation shell of H5O2+ to induce the Zundel polarization and by providing the energy for the cleavage of the hydrogen bond between a newly formed water molecule and H5O2+. Because the weight (fraction) of H5O2+ among protonated water clusters decreases as temperature increases, this proposed mechanism is considered to play the dominant role only when temperature is below 572 K, above which, protons transport by other mechanisms become dominant.

1.
Agmon
Noam
,
1995
, “
The Grotthuss mechanism
,”
Chemical Physics Letters
, Volume
244
, Issues
5–6
, 13, October, Pages
456
462
.
2.
Choi
Jae-Hwan
,
Lee
Hong-Joo
and
Moon
Seung-Hyeon
, 2001, “
Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane
,”
Journal of Colloid and Interface Science
, Volume
238
, Issue
1
, June
2001
, Pages
188
195
3.
Pomes
R
and
Roux
B
,
1996
, “
Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel
,”
Biophysical Journal
, Vol.
71
,
19
39
4.
Park
Y. S.
,
Hatae
T.
,
Itoh
H.
,
Jang
M. Y.
and
Yamazaki
Y.
,
2004
, “
High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells
,”
Electrochimica Acta
, Volume
50
, Issues
2–3
, 30 November, Pages
592
596
5.
Banerjee
Shoibal
and
Curtin
Dennis E.
,
2004
, “
Nafion® perfluorinated membranes in fuel cells
,”
Journal of Fluorine Chemistry
, Volume
125
, Issue
8
, August, Pages
1211
1216
6.
C.J.D. von Grotthuss. Ann. Chim. LVIII (1806), p. 54.
7.
Hu¨ckel
,
1928
, “
E. Theorie der Beweglichkeiten des Wasserstoff- und Hydroxylions in wa¨ssriger Lo¨sung
.”
Z. Elektrochem.
34
,
546
562
8.
Stearn
A. E.
&
Eyring
J.
,
1937
, “
The deduction of reaction mechanisms from the theory of absolute rates
.”
J. Chem. Phys.
5
,
113
124
9.
Bernal
J. D.
&
Fowler
R. H.
,
1933
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
.”
J. Chem. Phys.
1
,
515
548
10.
Wannier
,
1935
, “
G. Die Beweglichkeit des Wasserstoff- und Hydroxylions in wa¨ßriger Lo¨sung
.”
Ann. Phys. (Leipz.)
24
,
545
590
.
11.
Huggins
M. L.
1936
, “
Hydrogen bridges in ice and liquid water
.”
J. Phys. Chem.
40
,
723
731
12.
Wicke
E.
,
Eigen
M.
&
Ackermann
,
1954
, “
Th. U¨ber den Zustand des Protons (Hydroniumions) in wa¨ßriger Lo¨sung
.”
Z. Phys. Chem. (N.F.)
1
,
340
364
13.
Eigen
,
1964
, “
M. Proton transfer, acid-base catalysis and enzymatic hydrolysis
.”
Angew. Chem. Int. Edn Engl.
3
,
1
19
14.
Zundel
G.
&
Metzger
H.
(
1968
) “
Energieba¨nder der tunnelnden U¨bershuß-Protenon in flu¨ssigen Sa¨uren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+
,”
Z. Phys. Chem.
58
225
245
.
15.
Zundel, 1976, G.in The Hydrogen Bond–Recent Developments in Theory and Experiments. II. Structure and Spectroscopy (eds Schuster, P., Zundel, G. & Sandorfy, C.) 683–766 (North-Holland, Amsterdam
16.
E. Hu¨ckel. Z. Electrochem. 34 (1928), p. 546
17.
Bernal
J. D.
and
Fowler
R. H.
.
1933
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
J. Chem. Phys.
1
, p.
515
515
.
18.
Eigen
M.
.
Ang. Chem. Intern. Ed.
3
(
1964
), p.
1
1
.
19.
L. Onsager. In: E. Whalley, S.J. Jones and L.W. Gold, Editors, Physics and chemistry of ice, Royal Society of Canada, Ottawa (1973), p. 10.
20.
Kunst
M.
and
Warman
J. M.
.
1983
, “
Nanosecond time-resolved conductivity studies of pulse-ionized ice. 2. The mobility and trapping of protons
,”
J. Phys. Chem.
87
, p.
4093
4093
.
21.
Li
T.
;
Wlaschin
A.
;
Balbuena
P. B.
, “
Theoretical Studies of Proton Transfer in Water and Model Polymer Electrolyte Systems
;
2001
,
Ind. Eng. Chem. Res
”; (Article);
40
(
22
);
4789
4800
.
22.
Agmon
N.
,
1999
, “
Proton solvation and proton mobility
,”
Isr. J. Chem.
39
, p.
493
493
.
23.
Lagodzinskaya
G. V.
,
Yunda
N. G.
and
Manelis
G. B.
,
2002
, “
H+-catalyzed symmetric proton exchange in neat liquids with a network of N-H...N and O-H...O hydrogen bonds and molecular mechanism of Grotthuss proton migration
,” Pages 51–61,
chemical physics
, Volume
282
, Issue
1
, Pages
1
180
24.
Walrafen
G. E.
,
Fisher
M. R.
,
Hokmabadi
M. S.
and
Yang
W. H.
.
1986
, “
Temperature dependence of the low- and high-frequency Raman scattering from liquid water
,”
J. Chem. Phys.
85
, p.
6970
6970
.
25.
Meiboom
S.
, “
Nuclear Magnetic Resonance Study of the Proton Transfer in Water
,”
J. Chem. Phys.
34
(
1961
), p.
375
375
.
26.
Kersti Hermansson and Lars Ojama¨e, on the role of electric fields for proton transfer in water, Solid State Ionics 77(1995) Pages 34–42
27.
Huggins
M. L.
,
1936
,
Hydrogen Bridges in Ice and Liquid Water
Journal of Physical Chemistry
40
723
723
.
28.
Lobaugh
J.
and
Voth
Gregory A.
,
1996
The quantum dynamics of an excess proton in water
,”
The Journal of Chemical Physics
– February 1, Volume
104
, Issue
5
, pp.
2056
2069
29.
Kornyshev
A. A.
;
Kuznetsov
A. M.
;
Spohr
E.
;
Ulstrup
J.
;
2003
, “
Kinetics of Proton Transport in Water Kornyshev
,”
J. Phys. Chem. B.
; (Review);
107
(
15
);
3351
3366
.
30.
Johnston
J.
J. Am. Chem. Soc.
1909
,
31
,
987
987
.
31.
Gierer
A. Z.
Naturforsch
.
1950
,
5a
,
581
581
.
32.
Gierer
A.
;
Wirtz, K. Ann. Phys.
1949
,
6
,
17
17
.
This content is only available via PDF.
You do not currently have access to this content.