The present work describes models for predicting concentration profiles of various species in each of the reactors present in a fuel processing system including a steam reformer, water gas-shift reactor and a preferential oxidation reactor. These reactor models incorporate phenomenological reaction schemes in power law format in order to predict the conversion of the species as a function of concentration and temperature. A surface film approach is used rather than the more traditional two-dimensional boundary layer in order to model the gas on the surface of the catalyst. The modeling framework is built within the Matlab Simulink environment to take advantage of available numerical schemes and optimization algorithms. Only steady state operation is considered for the reactors with validation occurring against experimental data obtained from the literature. In addition, temperature gradients within the reactors are imposed in order to eliminate the need to model the energy equation of motion. Parametric studies are performed on each of the individual reactors by varying the length, catalyst loading, catalyst dispersion and the effect of temperature drop across the reactor.

1.
Pettersson
L. J.
and
Westerholm
R.
.
State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs
.
International Journal of Hydrogen Energy
,
2001
;
26
(
3
): p.
243
264
.
2.
Nagaki, H., H. Furutani, and S. Takahashi. Acceptability of Premixed Hydrogen in Hydrogen Diesel Engine. SAE Paper 1999-01-2521, 1999.
3.
Karim, G.A. and M.E. Taylor. Hydrogen as a Fuel and the Feasibility of a Hydrogen-Oxygen Engine. SAE Paper 730089, 1973.
4.
Ahmed
S.
and
Krumpelt
M.
.
Hydrogen from hydrocarbon fuels for fuel cells
.
International Journal of Hydrogen Energy
,
2001
;
26
(
4
): p.
291
301
.
5.
Velu
S.
,
Suzuki
K.
,
Kapoor
M. P.
,
Ohashi
F.
, and
Osaki
T.
.
Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts
.
Applied Catalysis A: General
,
2001
;
213
(
1
): p.
47
63
.
6.
Choi
Y.
and
Stenger
H. G.
.
Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen
.
Journal of Power Sources
,
2003
;
124
(
2
): p.
432
439
.
7.
Pacheco
M.
,
Sira
J.
, and
Kopasz
J.
.
Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen: isooctane reforming
.
Applied Catalysis A: General
,
2003
;
250
(
1
): p.
161
175
.
8.
Depcik, C. and D. Assanis. One-Dimensional Automotive Catalyst Modeling. Submitted to Progress in Energy and Combustion Science, 2005.
9.
Oh
S. H.
and
Cavendish
J. C.
.
Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions
.
Industrial and Engineering Chemistry Research
,
1982
;
21
p.
29
37
.
10.
Hayes
R. E.
and
Kolaczkowski
S. T.
.
A study of Nusselt and Sherwood numbers in a monolith reactor
.
Catalysis Today
,
1999
;
47
(
1–4
): p.
295
303
.
11.
Fuller
E. N.
,
Schettler
P. D.
, and
Giddings
J. C.
.
A new method for prediction of binary gas-phase diffusion constants
.
Industrial and Engineering Chemistry
,
1966
;
58
(
5
): p.
19
27
.
12.
Vanden Bussche
K. M.
and
Froment
G. F.
.
A Steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst
.
Journal of Catalysis
,
1996
;
161
p.
1
10
.
13.
Jiang
C. J.
,
Trimm
D. L.
,
Wainwright
M. S.
, and
Cant
N. W.
.
Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst
.
Applied Catalysis A: General
,
1993
;
97
(
2
): p.
145
158
.
14.
Jiang
C. J.
,
Trimm
D. L.
,
Wainwright
M. S.
, and
Cant
N. W.
.
Kinetic study of steam reforming of methanol over copper-based catalysts
.
Applied Catalysis A: General
,
1993
;
93
(
2
): p.
245
255
.
15.
Peppley
B. A.
,
Amphlett
J. C.
,
Kearns
L. M.
, and
Mann
R. F.
.
Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network
.
Applied Catalysis A: General
,
1999
;
179
p.
21
29
.
16.
Peppley
B. A.
,
Amphlett
J. C.
,
Kearns
L. M.
, and
Mann
R. F.
.
Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model
.
Applied Catalysis A: General
,
1999
;
179
p.
31
49
.
17.
Cao
C.
,
Xia
G.
,
Holladay
J.
,
Jones
E.
, and
Wang
Y.
.
Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor
.
Applied Catalysis A: General
,
2004
;
262
(
1
): p.
19
29
.
18.
Takezawa
N.
,
Kobayashi
H.
,
Hirose
A.
,
Shimokawabe
M.
, and
Takahashi
K.
.
Steam reforming of methanol on copper-silica catalysts - effect of copper loading and calcination temperature on the reaction
.
Applied Catalysis
,
1982
;
4
(
2
): p.
127
134
.
19.
Trimm
D. L.
and
O¨nsan
Z. I.
.
Onboard Fuel conversion for Hydrogen-fuel-cell-driven vehicles
.
Catalysis Reviews
,
2001
;
43
(
1&2
): p.
31
84
.
20.
Jiang
C. J.
,
Trimm
D. L.
, and
Wainwright
M. S.
.
New technology for hydrogen production by the catalytic oxidation and steam reforming of methanol at low temperatures
.
Chemical Engineering and Technology
,
1995
;
18
(
1
): p.
1
6
.
21.
Kee, R.J., F.M. Rupley, E. Meeks, and J.A. Miller. Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics. Sandia National Laboratories SAND96-8216; 1996.
22.
Lee
S. H.
,
Han
J.
, and
Lee
K.-Y
.
Development of 10-kWe preferential oxidation system for fuel cell vehicles
.
Journal of Power Sources
,
2002
;
109
(
2
): p.
394
402
.
23.
Kahlich
M. J.
,
Gasteiger
H. A.
, and
Behm
R. J.
.
Kinetics of the selective CO oxidation in H2-Rich Gas on Pt/Al2O3
.
Journal of Catalysis
,
1997
;
171
p.
93
105
.
24.
Han
Y.-F.
,
Kahlich
M. J.
,
Kinne
M.
, and
Behm
R. J.
.
Kinetic study of selective CO oxidation in H2-rich gas on a Ru/γ-Al2O3 catalyst
.
Physical Chemistry Chemical Physics
,
2002
;
4
(
2
): p.
389
397
.
25.
Kim
D. H.
and
Cha
J. E.
.
A CuO-CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures
.
Catalysis Letters
,
2003
;
86
(
1–3
): p.
107
112
.
This content is only available via PDF.
You do not currently have access to this content.