In this paper, a three dimensional thermo-fluid/electro-chemical model is proposed to simulate the heat and mass transfer phenomena in a micro-geometry co-flow solid oxide fuel cell. Governing equation of mass, momentum and energy conservation are simultaneously solved. A network circuit is applied to simulate the electrical potential, ohmic losses and activation polarization. Cyclic boundary conditions are imposed at the top and bottom of the model domains, while the lateral walls were assumed adiabatic and insulation. A parametric study examines the effect of micro-channel on the temperature field, concentration field, local current density and power density. Results demonstrate that microchannels can reduce temperature or concentration difference between reaction locations and stream. The local current density is much more uniform and output voltage is also improved. Numerical simulation will be expected to help optimize the design of a micro solid oxide fuel cell.

1.
Ahmed
S.
,
Mcpheeters
C.
,
Kumar
R.
,
1991
, “
Thermal-hydraulic model of a monolithic solid oxide fuel cell
,”
J. Electrochem. Soc.
,
138
,
2712
2719
.
2.
Hirano
A.
,
Suzuki
M.
,
Ippommatsu
M.
,
1992
, “
Evaluation of a new solid oxide fuel cell system by non-isothermal modeling
,”
J. Electrochem. Soc.
,
139
,
2744
2751
.
3.
Bessette
N. F.
,
Wefer
W. J.
,
Winnick
J.
,
1995
, “
A mathematical model of a solid oxide fuel cell
,”
J. Electrochem. Soc.
,
142
,
3792
3780
.
4.
Neophytides
S. G.
,
1999
, “
The reversed flow operation of a cross-flow solid oxide fuel cell monolith
,”
Chem. Eng. Sci
,
54
, pp.
4603
4613
.
5.
Ferguson
J. R.
,
Fiard
J. M.
,
Herbin
R.
,
1996
, “
Three-dimensional numerical simulation for various geometries of solid oxide fuel cells
,”
J. Power Sources
,
58
, pp.
109
122
.
6.
Kim
J. W.
,
Virkar
A. V.
,
Fung
K. Z.
,
Mehta
K.
,
Singhal
S. C.
,
1999
, “
Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells
,”
J. Electrochem. Soc.
,
146
,
69
78
.
7.
Yakabe
H.
,
Ogiwara
T.
,
Hishinuma
M.
,
Yasuda
I.
,
2001
, “
3-D model calculation for planar SOFC
,”
J. Power Sources
,
102
, pp.
144
154
.
8.
Li
P. W.
,
Schaefer
L.
,
Chyu
M. K.
,
2004
, “
A numerical model coupling the heat and gas species’ transport processes in a tubular SOFC
,”
ASME J. of Heat Transfer
,
126
, pp.
219
229
.
9.
Singhal, S. C., Kendall, K., 2003, High temperature solid oxide fuel cells, Elsevier, New York.
10.
Lehnert
W.
,
Meusinger
J.
,
Thom
F.
,
2000
, “
Modeling of gas transport phenomena in SOFC anodes
,”
J. Power Sources
,
87
, pp.
57
63
.
11.
Yakabe
H.
,
Sakurai
K.
,
2004
, “
3D simulation on the current path in planar SOFCs
,”
Solid State Ionics
,
174
, pp.
295
302
.
12.
Lu
Y.
,
Schaefer
L.
,
Li
P. W.
,
2005
, “
Numerical study of a flat-tube high power density solid oxide fuel cell: part I. heat/mass transfer and fluid flow
,”
J. Power Sources
,
140
, pp.
331
339
.
13.
Tanner
C. W.
,
Virkar
A. V.
,
2003
, “
A simple model for interconnect design of planar solid oxide fuel cell
,”
J. Power Sources
,
113
, pp.
44
56
.
14.
Campanari
S.
,
Iora
P.
,
2004
, “
Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry
,”
J. Power Sources
,
132
, pp.
113
126
.
15.
Haberman
B. A.
,
Young
J. B.
,
2004
, “
Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell
,”
Int. J. Heat Mass Transfer
,
47
,
3617
3629
.
16.
Haynes
C.
,
Wepfer
W. J.
,
2000
, “
‘Design for power’ of a commercial grade tubular solid oxide fuel cell
,”
Energy Conversion and Management
,
41
,
1123
1139
.
17.
Chan
S. H.
,
Khor
K. A.
,
Xia
Z. T.
,
2001
, “
A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness
,”
J. Power Sources
,
93
, pp.
130
140
.
18.
Iwata
M.
,
Hikosaka
T.
,
Morita
M.
,
Iwanari
T.
,
Ito
K.
,
Onda
K.
,
Esaki
Y.
,
Sakaki
Y.
,
Nagata
S.
,
2000
, “
Performance analysis of planar-type unit SOFC considering current and temperature distributions
,”
Solid State Ionics
,
132
, pp.
297
308
.
This content is only available via PDF.
You do not currently have access to this content.