A three dimensional, two-phase, multi-component model has been developed for a liquid-fed DMFC. Both liquid and gas phases are considered in the entire anode, including the channel, the diffusion layer and the catalyst layer; while at the cathode, two-phases are considered in the gas diffusion layer and the catalyst layer but single gas phase is considered in the channel. For the electrochemical kinetics, the Tafel equation incorporating the effects of two phases is used at both the cathode and anode sides. At the anode side, the presence of gas phase reduces the active catalyst areas; at the cathode side, the presence of liquid reduces the active catalyst areas. The mixed potential effects due to methanol crossover are also included in the model. The modeling results showed that the porosity of the anode diffusion layer played a very important role in the DMFC performance. With a low porosity, the produced carbon dioxide cannot be removed effectively from the catalyst layer, thus reducing the active catalyst area as well as blocking methanol from reaching the reaction zone. A similar effect exits in the cathode for the liquid water. The modeling results also show that the single-phase flow models over-predict methanol cross-over.

1.
Baxter
S. F.
,
Battaglia
V. S.
, and
White
R. E.
,
Methanol fuel cell model: anode
,
Journal of the Electrochemical Society
,
146
(
2
)
437
447
(
1999
).
2.
Dohle
H.
,
Schmitz
H.
,
Bewer
T.
,
Mergel
J.
and
Stolten
D.
,
Development of a compact 500W class direct methanol fuel cell stack
,
Journal of Power Sources
,
106
(
2002
),
313
322
.
3.
Argyropoulos
P.
,
Scott
K.
,
Taama
W. M.
,
Modeling pressure distribution and anode/cathode streams vapor-liquid equilibrium composition in liquid feed direct methanol fuel cells
,
Chemical Engineering Journal
, V
78
(
2000
) p.
29
41
4.
Scott
K.
,
Argyropoulos
P.
,
Sundmacher
K.
,
A model for the liquid feed direct methanol fuel cell
,
Journal of Electroanalytical Chemisty
, V
477
(
1999
) p.
97
110
.
5.
Sundmacher
Kai
,
Scott
Keith
,
Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapor-liquid-solid system
,
Chemical Engineering Science
, V
54
(
1999
) p.
2927
2936
.
6.
Cruickshank
John
,
Scott
Keith
,
The degree and effect of methanol crossover in direct methanol fuel cell
,
Journal of Power Sources
,
70
(
1998
)
40
47
.
7.
Shukla
A. K.
,
Jackson
C. L.
,
Scott
K.
,
Murgia
G.
,
A solid-polymer electrolyte direct methanol fuel cell with a mixed reactant and air anode
,
Journal of Power Sources
,
111
(
2002
)
43
51
.
8.
Kulikovsky
A. A.
,
Two-dimensional numerical modeling of a direct methanol fuel cell
,
Journal of applied electrochemistry
, V
30
(
2000
) p.
1005
1014
.
9.
Wang
Z. H.
and
Wang
C. Y.
,
Mathematical modeling of liquid-feed methanol fuel cells
,
Journal of The Elecrochemical Society
,
150
(
4
)
A508–A519
A508–A519
(
2003
).
10.
Birgersson
Erik
,
Nordlund
Joakim
,
Ekstrom
Henrik
,
Vynnycky
Michael
, and
Lindbergh
Goran
,
Reduced two-dimensional one-phase model for analysis of the anode of a DMFC
,
Journal of the Electrochemical Society
,
150
(
10
)
A1368–A1376
A1368–A1376
(
2003
).
11.
Divisek
Jiri
,
Fuhrmann
Jurgen
,
Gartner
Klaus
, and
Jung
Rita
,
Performance modeling of a direct methanol fuel cell
,
Journal of The Electrochemical Society
,
150
(
6
)
A811–A825
A811–A825
(
2003
)
12.
Wang
Z. H.
,
Wang
C. Y.
,
Chen
K. S.
,
Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells
,
Journal of Power Sources
,
94
(
2000
)
40
50
13.
You
Lixing
and
Liu
Hongtan
, “
A parametric study of the cathode catalyst layer of PEM fuel cell suing a pseudo-homogeneous model
,”
International Journal of Hydrogen Energy
, Vol.
26
, pp.
991
999
, (
2001
).
14.
Berning
T.
and
Djilali
N.
,
A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell
,
Journal of The Electrochemical Society
,
150
(
12
)
A 1598–A1607
A 1598–A1607
(
2003
)
15.
Wensheng He, Jung S. Yi, and Trung Van Nguyen, Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChe Journal, October 2000 Vol. 45, No. 10
16.
Wang
C. Y.
,
Cheng
P.
,
A multiphase mixture model for multiphase multi-component transport in capillary porous media. I. Model development
.
Int. J. Heat Mass Transfer
,
39
(
1996
)
3607
3618
.
17.
Cheng
P.
,
Wang
C. Y.
,
A multiphase mixture model for multiphase multi-component transport in capillary porous media. II. Numerical simulation of the transport of organic compounds in the subsurface
.
Int. J. Heat Mass Transfer
,
39
(
1996
)
3619
3632
.
18.
Argyropoulos
P.
,
Scott
K.
,
Taama
W. M.
,
Carbon dioxide evolution patterns in direct methanol fuel Cells
,
Electrochimica Acta
44
(
1999
)
3575
3584
.
19.
Natarajan
Dilip
and
Nguyen
Trung Van
,
A two-dimensional, two-phase, multi component, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors
,
Journal of the Electrochemical Society
,
148
(
12
)
A1324–A1335
A1324–A1335
(
2001
)
20.
Springer
T. E.
,
Zawodzinski
T. A.
,
Gottesfeld
S.
,
Polymer electrolyte fuel cell model
,
J. Electrochem. Soc.
138
(
8
) (
1991
),
2334
2342
.
21.
Sukkee
Um
,
Wang
C.-Y
, and
Chen
K. S.
,
Computational fluid dynamics modeling of proton exchange membrane fuel cells
,
Journal of The Electrochemical Society
,
147
(
12
)
4485
4493
(
2000
)
22.
Ren
X.
,
Springer
T. E.
,
Zawodzingski
T. A.
, and
Gottesfeld
S.
,
Methanol transport through Nafion membranes electro-osmotic drag effects on potential step measurements
,
Journal of Electrochemical Society
,
147
,
466
466
(
2000
).
23.
Jiabin
Ge
and
Hongtan
Liu
,
Experimental studies of a direct methanol fuel cell
,
Journal of Power Sources
,
142
(
2005
)
56
69
.
This content is only available via PDF.
You do not currently have access to this content.