An equivalent continuum-atomistic algorithm is proposed for carbon-based structures such as nano-scale graphene platelets (NGPs) and carbon nanotubes (CNTs) individually or as stiffeners with polymers. This equivalent continuum-atomistic model will account for the nonlocal effect at the atomistic level and will be a highly accurate mean to determine the bulk properties of graphene-structured materials from its atomistic parameters. In the model, the equivalent continuum and atomic domains are analyzed by finite elements and molecular dynamics finite element-based where atoms stand as nodes in discretized form. Micromechanics idea of representative volume elements (RVE) will be used to determine averaged homogenized properties. In the procedure, a unit hexagonal cell will be the RVE. A minimum volume of material containing this RVE and the neighboring hexagonal cells will be chosen. The size of this volume should cover all the atoms, which have bonded, and nonbonded interaction with the atoms of the RVE unit cell. This minimum volume will be subjected to several load cases. Determination of the response of the RVE hexagonal unit cell contained within the minimum volume, and its potential energy density under the defined load cases, will lead to the determination of mechanical parameters of an equivalent, continuum geometrical shape. For a single layer NGP the thickness of the hexagonal continuum plate is assumed to be 0.34 nm, while in three-dimension and multilayered the actual thickness of layers can be implemented. Under identical loading on the minimum volumes, identical potential (strain) energies for both models will be assumed. Through this equivalence a linkage between the molecular force field constants and the structural elements stiffness properties will be established.

1.
Abraham
F.
,
Broughton
J.
,
Bernstein
N.
,
Kaxiras
E.
,
1998
.
Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture
,
Europhys. Lett.
44
, pp.
783
787
.
2.
Belytschko
T.
,
Xiao
S. P.
2003
.
Coupling methods for continuum model with molecular model
,
J. Mult. Comput. Engrg.
1
, pp.
115
126
.
3.
Ben Dhia, H., 1998. Multiscale mechanical problems: the Arlequin method, C. R. Acad. Sci., Paris 326 (Ser-II b) pp. 899–904.
4.
Brenner
D. W.
,
1990
.
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films
.
Phys. Rev. B
,
42
., pp.
9458
9471
.
5.
Brenner
D. W.
,
Shenderova
O. A.
,
Harrison
J. A.
,
Stuart
S. J.
,
Ni
B.
,
Sinnott
S. B.
,
2002
.
Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
.
J. Phys: Condensed Matter
,
14
, pp.
783
802
.
6.
Broughton
J.
,
Abraham
F.
,
Bernstein
N.
,
Kaxiras
E.
,
1999
.
Concurrent coupling of length scales: methodology and application
,
Phys. Rev. B
60
, pp.
2391
2403
.
7.
Cai
W.
,
de Koning
M.
,
Bulatov
V.
,
Yip
S.
,
2000
.
Minimizing boundary reflections in coupled-domain simulations
,
Phys. Rev. Lett.
85
,
3213
3216
.
8.
Curtin
W. A.
,
Miller
R. E.
,
2003
.
Atomistic/continuum coupling in computational materials science
,
Model. Simul. Mater. Sci. Engrg.
11
,
R33–R68
R33–R68
.
9.
Falvo
M. R.
,
Taylor
R. M.
,
Helser
A.
,
Chi
V.
,
Brooks
F, P.
,
Washburn
S.
,
Superfine
R.
,
1999
.
Nanometer Scale Rolling and Sliding of Carbon Nanotubes
.
Nature
,
397
, pp.
236
238
.
10.
Frogley
M. D.
,
Ravich
D.
,
Wagner
H. D.
2003
,
Mechanical properties of carbon nanoparticle-reinforced elastomers
,
Comp. Sci. Tech.
63
, pp.
1655
1661
.
11.
Garnich
M.
, and
Karami
G.
,
2004
,
Finite Element Micromechanics for Stiffness and Strength of Wavy Fiber Composites
.
J. of Composite Materials
,
38
(
4
), pp.
273
292
.
12.
Garnich M. and Karami, G. 2005, Localized Fiber Waviness and Failure in Unidirectional Composites, J. of Comp. Mater. (in press)
13.
Govindjee
S
,
Sackman
J. L.
,
1999
.
On the use of continuum mechanics to estimate the properties of nanotubes
.
Solid State Communications
.
110
, pp.
227
30
.
14.
Jang B. Z., Huang, W., 2002. W. C. Nano-scaled Graphene Plates and Process for Production, U.S. Patent. Pending, (10/274,473) 10/21/2002.
15.
Jin
L.
,
Bower
C.
,
Zhou
O.
,
1998
.
Alignment of carbon nanotubes in a polymer matrix by mechanical stretching
.
Appl. Phys. Lett.
73
(
9
), pp.
1197
1202
.
16.
Jin
Y.
,
Yuan
F. G.
,
2003
.
Simulation of elastic properties of single-walled carbon nanotubes
.
Comp. Sci. and Techn.
,
63
, pp.
1507
1515
.
17.
Karami
G.
,
Garnich
M.
,
2005
.
Effective moduli and failure considerations for composites with periodic fiber waviness
.
J. Comp. Struct.
;
7
(
4
):
461
475
.
18.
Kelly B.T. 1981. Physics of Graphite. London: Applied Science Press.
19.
Knap
J.
,
Ortiz
M.
2001
.
An analysis of the quasicontinuum method
J. Mech. Phys. Solids
,
49
, pp.
1899
923
20.
Kohlhoff S., Gumbsch P. and Fischmeister H F 1991, Crack propagation in bcc crystals studied with a combined finite-element and atomistic model Phil. Mag. A 64851–78
21.
Krishnan
A
,
Dujardin
E
,
Ebbesen
TW
,
Yianilos
PN
,
Treacy
M. M. J.
1998
.
Young’s modulus of single-walled nanotubes
.
Physical Review B.
58
(
20
):
14013
9
.
22.
Hernandez
E
,
Goze
C
,
Bernier
P
,
Rubio
A.
1999
.
Elastic properties of single-wall nanotubes
.
Applied Physics A
,
68
, pp.
287
92
.
23.
Huang
Z.
,
We
E
,
2001
.
Matching conditions in atomistic-continuum modeling of materials
,
Phys. Rev. Lett.
87
,
135501
135501
.
24.
Li
C.
and
Chou
T. W.
,
2001
.
Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces
.
Composite Science and Technology
,
63
, pp.
1517
1524
.
25.
Lu
J. P.
,
1997
.
Elastic Properties of Carbon Nanotubes and Nanoropes
,
Phys. Rev. Lett.
,
79
, pp.
1297
1300
.
26.
Ma
X.
,
Wang
H.
,
Yang
W.
,
2004
.
Tribological behavior of aligned single walled Carbon Nanotubes
,
ASME J. Eng. Mater. And Technology
,
126
, pp.
258
264
.
27.
Miller
R. E.
,
2003
.
Direct coupling of atomistic and continuum mechanics in computational material sciences
.,
J. Multiscale Engineering
,
1
, pp.
57
67
.
28.
Odegard
G. M.
,
Gates
T. S.
,
Nicholson
L. M.
, and
Wise
K. E.
,
2002
.
Equivalent-continuum modeling of nano-structured materials
,
Composite Science and Technology
,
62
, pp.
1869
1880
.
29.
Odegard
G. M.
,
Gates
T. S.
,
Wise
K. E.
,
Park
C.
, and
Siochi
E. J.
,
2003
.
Constitutive modelling of nanotubes-reinforced polymer composites
,
Composite Science and Technology
,
63
, pp.
1671
1687
.
30.
Odegard
G. M.
,
Pipes
R. B.
, and
Hubert
P.
,
2004
.
Comparisons of two models of SWCN polymer composites
,
Composite Science and Technology
,
64
, pp.
1011
1020
.
31.
Popov
VN
,
Van Doren
VE
,
Balkanski
M.
2000
.
Elastic properties of crystals of single-walled carbon nanotubes
.
Solid State Communications.
114
, pp.
395
9
.
32.
Rudd
R. E.
,
Broughton
J.
,
1998
.
Coarse-grained molecular dynamics and the atomic limit of finite elements
,
Phys. Rev. B
58
R5893–R5896
R5893–R5896
.
33.
Rudd R. E. and Broughton J Q 2000 Concurrent coupling of length scales in solid state systems Phys. Status Solidi b 217251–91
34.
Salvetat
J. P.
,
Bonard
J. M
,
Thomson
N. H.
,
Kulik
A. J.
,
Forro
L
,
Benoit
W
, et al.
1999
.
Mechanical Properties of Carbon Nanotubes
.
Applied Physics
A.
69
, pp.
255
60
.
35.
Shilkrot, L. E., Miller R E and Curtin W A 2002 Coupled atomistic and discrete dislocation plasticity Phys. Rev. Lett. 89025501-1–025501-4
36.
Tadmor
E. B.
,
Phillips
R.
,
Ortiz
M.
2000
.
Hierarchical modeling in the mechanics of materials
,
Int. J. Solids Struct.
37
, pp.
379
389
.
37.
Tadmor
E. B.
,
Ortiz
M.
and
Phillips
R
1996
.
Quasicontinuum analysis of defects in solids
Phil. Mag.
A,
73
, pp.
1529
63
.
38.
Tadmor
E.
,
Ortiz
M.
,
Phillips
R.
1996
.
Quasicontinuum analysis of defects in solids
,
Philos. Mag.
A
73
, pp.
1529
1563
.
39.
Treacy
M. M. J.
,
Ebbesen
T. W.
, and
Gibson
J. M.
,
1996
.
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,
Nature
,
381
, pp.
678
680
.
40.
Thostenson
T. E.
,
Ren
Z.
,
Chou
T. W.
,
2001
.
Advances in the Science and Technology of carbon nanotubes and their composites: a review
,
Composite Science and Technology
,
61
, pp.
1899
1912
.
41.
Van Lier
G
,
Van Alsenoy
C
,
Van Doren
V
,
Geerlings
P.
2000
.
Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene
.
Chemical Physics Letters.
326
, pp.
181
5
.
42.
Wagner
G. J.
,
Liu
W. K.
,
2003
.
Coupling of atomic and continuum simulations using a bridging scale decomposition
,
J. Comput. Phys.
190
, pp.
249
274
.
43.
Xiao
S. P.
,
Belytschko
T.
2004
.
A bridging domain method for coupling continua with molecular dynamics
,
Comput. Methods Appl. Mech. Engrg.
193
, pp.
1645
166
.
44.
Yakobson
B. I.
,
Brabec
C. J.
, and
Bernholc
J.
,
1996
.
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.
45.
Yao
N
,
Lordi
V.
1998
.
Young’s modulus of single-walled carbon nanotubes
.
Journal of Applied Physics
,
84
(
4
), pp.
1939
43
.
46.
Yu
M.-F.
,
Yakobson
B. I.
, and
Ruoff
R. S.
,
2000
.
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,
J. Phys. Chem. B
,
104
, pp.
8764
5767
.
This content is only available via PDF.
You do not currently have access to this content.