A fully coupled model considering both sensing and actuation for composite plates with embedded piezoelectrics is constructed using the variational asymptotic method. Without invoking any ad hoc kinematic assumptions, we take advantage of the geometric small parameter inherent in the structure to mathematically split the original three-dimensional, geometrically nonlinear, piezoelectricity problem into: a coupled, linear, one-dimensional piezoelectric through-the-thickness analysis and a coupled, geometrically nonlinear, two-dimensional piezoelectric plate analysis. Two asymptotically correct models of multi-layer plates are developed for two different types of electrode arrangements. The constructed models are of the form of classical plate theory having a layerwise displacement and electric potential distribution. The present theory is implemented using the finite element method into the computer program VAPAS (variational-asymptotic plate and shell analysis). Simple examples are used to demonstrate the application of the present theory.

1.
Rao
S. S.
and
Sunar
M.
.
Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey
.
Applied Mechanics Reviews
,
47
:
113
123
,
1994
.
2.
Tani
J.
,
Takagi
T.
, and
Qiu
J.
.
Intelligent material systems: application of functional materials
.
Applied Mechanics Reviews
,
51
:
505
521
,
1998
.
3.
Sunar
M.
and
Rao
S. S.
.
Recent advances in sensing and control of flexible structures via piezoelectric materials technology
.
Applied Mechanics Reviews
,
52
:
1
16
,
1999
.
4.
Chopra
I.
.
Status of application of smart structures technology to rotorcraft systems
.
Journal of the American Helicopter Society
,
45
(
4
):
228
252
,
2000
.
5.
Giurgiutiu
V.
.
Review of smart materials actuation solutions for aeroelastic and vibration control
.
Journal of Intelligent Material Systems and Structures
,
11
:
525
544
,
2000
.
6.
Saravanos
D. A.
and
Heyliger
P. R.
.
Mechanics and computational models for laminated piezoelectric beams, plates, and shells
.
Applied Mechanics Review
,
52
(
11
):
305
319
,
1999
.
7.
Crawley
E. F.
and
Lazarus
K. B.
.
Induced strain actuation of isotropic and anisotropic plates
.
AIAA Journal
,
29
(
6
):
944
951
,
1991
.
8.
Hong
C. H.
and
Chopra
I.
.
Modeling and validation of induced strain actuation of composite coupled plates
.
AIAA Journal
,
37
(
3
):
372
377
,
1999
.
9.
Wang
J.
and
Yang
J.
.
Higher-order theories of piezoelectric plates and applications
.
Applied Mechanics Reviews
,
53
(
4
):
87
99
, November
2000
.
10.
Wang
Q.
,
Quek
S. T.
,
Sun
C. T.
, and
Liu
X.
.
Analysis of piezoelectric coupled circular plate
.
Smart Materials and Structures
,
10
:
229
239
,
2001
.
11.
Qu
Z. Q.
.
An efficient modeling method for laminated composite plates with piezoelectric sensors and actuators
.
Smart Materials and Structures
,
10
:
807
818
,
2001
.
12.
Kapuria
S.
,
Dube
G. P.
, and
Dumir
P. C.
.
First-order shear deformation theory solution for a circular piezoelectric composite plate under axisymmetric load
.
Smart Materials and Structures
,
12
:
417
423
,
2003
.
13.
Pai
P. F.
,
Nayfeh
A. H.
,
Oh
K.
, and
Mook
D. T.
.
Refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors
.
International Journal of Solids and Structures
,
30
(
12
):
1603
1630
,
1993
.
14.
Icardi
U.
and
Sciuva
M. D.
.
Large-deflection and stress analysis of multilayered plates with induced-strain actuators
.
Smart Materials and Structures
,
5
:
140
164
,
1995
.
15.
Saravanos
D.
,
Heyliger
P.
, and
Hopkins
D.
.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
.
International Journal of Solids and Structures
,
34
(
3
):
359
378
,
1997
.
16.
Chattopadhyay
A.
,
Li
J.
, and
Gu
H.
.
Coupled thermopiezoelectric-mechanical model for smart composite laminates
.
AIAA Journal
,
37
(
12
):
1633
1638
,
1999
.
17.
Robbins
D. H.
and
Reddy
J. N.
.
An efficient computational model for the stress analysis of smart plate structures
.
Smart Materials and Structures
,
5
:
353
360
,
1996
.
18.
Chee
C.
,
Tong
L.
, and
Steven
G.
.
A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation
.
Computers & Structures
,
77
:
253
268
,
2000
.
19.
Maugin
G. A.
and
Attou
D.
.
Asymptotic theory of thin piezoelectric plates
.
Quarterly Journal of Mechanics and Applied Mathematics
,
43
:
374
362
,
1990
.
20.
Cheng
Z. Q.
and
Batra
R. C.
.
Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates
.
AIAA Journal
,
38
(
2
):
317
324
,
2000
.
21.
Kalamkarov
A. L.
and
Kolpakov
A. G.
.
A new asymptotic model for a composite piezoelastic plate
.
International journal of solids and structures
,
38
(
34–35
):
6027
6044
,
2001
.
22.
Reddy
J. N.
and
Cheng
Z. Q.
.
Three-dimensional solutions of smart functionally graded plates
.
Journal of Applied Mechanics
,
68
(
2
):
234
241
,
2001
.
23.
K. C. Le. Vibrations of Shells and Rods. Springer, Germany, 1st edition, 1999.
24.
Berdichevsky
V. L.
.
Variational-asymptotic method of constructing a theory of shells
.
PMM
,
43
(
4
):
664
687
,
1979
.
25.
Yu
W.
,
Hodges
D. H.
, and
Volovoi
V. V.
.
Asymptotic construction of Reissner-like models for composite plates with accurate strain recovery
.
International Journal of Solids and Structures
,
39
(
20
):
5185
5203
,
2002
.
26.
Yu
W.
,
Hodges
D. H.
, and
Volovoi
V. V.
.
Asymptotically accurate 3-D recovery from Reissner-like composite plate finite elements
.
Computers and Structures
,
81
(
7
):
439
454
,
2003
.
27.
Yu
W.
and
Hodges
D. H.
.
An asymptotic approach for thermoelastic analysis of laminated composite plates
.
Journal of Engineering Mechanics
,
130
(
5
):
531
540
,
2004
.
28.
Yu
W.
and
Hodges
D. H.
.
A simple thermopiezoelastic model for composite plates with accurate stress recovery
.
Smart Materials and Structures
,
13
(
4
):
926
938
, 2004.
29.
D. A. Danielson. Finite rotation with small strain in beams and plates. In Proceedings of the 2nd Pan American Congress of Applied Mechanics, Valparaiso, Chile, January 2–4 1991. Valparaiso Chile.
30.
Hodges
D. H.
,
Atilgan
A. R.
, and
Danielson
D. A.
.
A geometrically nonlinear theory of elastic plates
.
Journal of Applied Mechanics
,
60
(
1
):
109
116
, March
1993
.
This content is only available via PDF.
You do not currently have access to this content.