Functionally Graded Piezoceramics (FGP) offer performance similar to conventional piezoceramic actuators while reducing the problems associated with their bonded construction (high stress levels, large stress discontinuities, delamination, etc.). This paper presents the Dual Electro/Piezo Property (DEPP) gradient method and the tools necessary for designing, modeling, and producing DEPP FGP actuators including: material property gradient maps, a Micro-Fabrication by Co-eXtrusion (MFCX) process, and experimentally validated analytic and numeric performance and stress modeling methodologies that account for continuous and layered material gradients and complex electric field profiles. These models predict a dramatic internal stress reduction achieved by the DEPP method. Preliminary reliability testing confirm this with an increase in piezoelectric actuator lifetimes over 1010 cycles, improvement of almost four orders of magnitude compared to conventional piezoceramic actuation.

1.
Heartling
G. H.
, “
Rainbow ceramics - A new type of ultrahigh displacement actuator
,”
Am. Ceramics Soc. Bulletin
,
73
, [
1
], Jan., pp.
93
96
,
1994
.
2.
Wang
Q. M.
and
Cross
L. E.
, “
Analysis of high temperature reduction processing of rainbow actuator
,”
Materials Chemistry and Physics
,
58
, pp.
20
25
,
1999
.
3.
Wu
C. C. M.
,
Kahn
M.
, and
Moy
W.
, “
Piezoelectric ceramics with functional gradients: A new application in material design
,”
J. of the Am. Ceramics Soc.
,
79
, [
3
], pp.
809
812
,
1996
.
4.
Takagi
K.
,
Li
J.-F.
,
Yokoyama
S.
, and
Watanabe
R.
, “
Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators
,”
J. of the Eur. Ceramic Soc.
,
23
, pp.
1577
1583
,
2003
.
5.
Jin
D.
and
Meng
Z.
, “
Functionally graded PZT/ZnO piezoelectric composites
,”
J. of Materials Science Letters
,
22
, pp.
971
974
,
2003
.
6.
Alexander, P.W., and Brei, D., “The design tradeoffs of linear functionally graded piezoceramic actuators,” Proc. of 2003 ASME Intl. Mechanical Engineering Congress, 68, pp. 171–180, 2003.
7.
Alexander, P.W., Brei, D., and Halloran, J.W., “The Fabrication and Material Characterization of PZT Based Functionally Graded Piezoceramics,” Proc. of 2005 SPIE Smart Structures and Materials Conference, 2005.
8.
Alexander, P.W., Brei, D., and Halloran, J.W., “The Force-Deflection Behavior of Functionally Graded Piezoceramic Actuators,” Proc. of 2005 AIAA/ASME/AHS Adaptive Structures Conference, 2005.
9.
Hudnut, S., Almajid, A., and Taya, M., “Functionally gradient piezoelectric bimorph type actuator,” Proc. of SPIE Smart Structures and Materials 2000: Behavior and Mechanics, 3992, pp. 376–386, 2000.
10.
Li
X.
,
Vartuli
J. S.
,
Milius
D. L.
,
Aksay
I. A.
,
Shih
W. Y.
, and
Shih
W. H.
, “
Electromechanical properties of a ceramic d31-gradinet flextensional actuator
,”
J. of the Am. Ceramics Soc.
,
84
, [
5]
, pp.
996
1003
,
2001
.
11.
Qui
J.
,
Tani
J.
,
Ueno
T.
,
Morita
T.
,
Takahashi
H.
, and
Du
H.
, “
Fabrication and high durability of functionally graded piezoelectric bending actuators
,”
Smart Materials and Structures
,
12
, pp.
115
121
,
2003
.
12.
Zhu
X.
,
Wang
Q.
, and
Meng
Z.
, “
A functionally gradient piezoelectric actuator prepared by powder metallurgical process in PNN-PZ-PT system
,”
J. of Materials Science Letters
,
14
, pp.
516
518
,
1995
.
13.
Xu
J.
,
Zhu
X.
, and
Meng
Z.
, “
Effect of the interdiffusion reaction on the compatibility in PZT/PNN functionally gradient piezoelectric materials
,”
IEEE Transactions on Components and Packaging Technology
,
22
, [
1]
, March, pp.
11
16
,
1999
.
14.
Zhu
X.
,
Zhu
J.
,
Zhou
S.
,
Li
Q.
,
Liu
Z.
,
Ming
N.
, and
Meng
Z.
, “
EPMA and TEM investigations on the interdiffusion layer of the PNN/PZT functionally gradient piezoelectric ceramics
,”
J. of Materials Science
,
35
, pp.
1031
1036
,
2000
.
15.
Li
J.-F.
,
Takagi
K.
,
Ono
M.
,
Pan
W.
,
Watanabe
R.
,
Almajid
A.
, and
Taya
M.
, “
Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators
,”
J. of the Am. Ceramics Soc.
,
86
, [
7]
pp.
1094
1098
,
2003
.
16.
Crumm
A. T.
, and
Halloran
J. W.
, “
Fabrication of microconfigured multicomponent ceramics
,”
Journal of the American Ceramics Society
,
81
, [
4]
, pp.
1053
1057
,
1998
.
17.
Koh
Y. H.
,
Kim
H. W.
,
Kim
H. E.
, and
Halloran
J. W.
, “
Fabrication of microchannelled-hydroxyapatite bioceramic by a coextrusion process
,”
J. of the Am. Ceramic Soc.
,
85
, [
10]
, pp.
2578
2580
,
2002
.
18.
Qi
J.
and
Halloran
J. W.
, “
Negative thermal expansion artificial material from iron-nickel alloys by oxide coextrusion with reductive sintering
,”
J. of Materials Science
,
39
, [
13]
, pp.
4113
4118
,
2004
.
19.
Crumm
A. T.
,
Silva
E. C. N.
,
Kikuchi
N.
,
Brei
D.
, and
Halloran
J. W.
, “
New microfabrication technique for electroactive ceramic and electrode materials
,”
Proceedings of SPIE Smart Structures and Materials
,
3324
, pp.
20
27
,
1998
.
20.
Brei
D.
and
Cannon
B. J.
, “
Piezoceramic hollow fiber active composites
,”
Composites Science and Technology
,
64
, [
2]
, pp.
245
261
,
2004
.
21.
Cannon
B. J.
and
Brei
D.
, “
Feasibility study of microfabrication by coextrusion (MFCX) hollow fibers for active composites
,”
J. of Intelligent Material Systems and Structures
,
11
, [
9]
, pp.
659
670
,
2000
.
22.
Almajid, A., Taya, M., Takagi, K., Li, L.-F., and Watanabe, R., “Fabrication and modeling of porous FGM piezoelectric actuators,” Proc. of SPIE Smart Structures and Materials 2002: Smart Structures and Integrated Systems, 4701, pp. 467–476, 2002.
23.
Almajid
A.
,
Taya
M.
, and
Hudnut
S.
, “
Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure
,”
Int. J. of Solids and Structures
,
38
, pp.
3377
3391
,
2001
.
24.
Almajid, A., Hudnut, S., and Taya, M., “Modeling of finger-like functionally graded microstructure piezoelectric actuator,” Proc. of SPIE Smart Structures and Materials 2000: Smart Structures and Integrated Systems, 3985, pp. 742–749, 2000.
25.
Hudnut, S., Almajid, A., and Taya, M., “Functionally gradient piezoelectric bimorph type actuator,” Proc. of SPIE Smart Structures and Materials 2000: Behavior and Mechanics, 3992, pp. 376–386, 2000.
26.
Lee
P. C. Y.
,
Yu
J. D.
,
Li
X.
, and
Shih
W. H.
, “
Piezoelectric ceramic disks with thickness-graded material properties
,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
,
46
, [
1
], Jan., pp.
205
215
,
1999
.
27.
Lee
P. C. Y.
and
Yu
J. D.
, “
Governing equations for a piezoelectric plate with graded properties across the thickness
,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
,
45
, [
1
], Jan., pp.
236
250
,
1988
.
28.
Zhu
X.
and
Meng
Z.
, “
Operational principal, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator
,”
Sensors and Actuators A: Physical
,
48
, pp.
169
176
,
1995
.
29.
Wu
X.-H.
,
Chen
C.
,
Shen
Y.-P.
, and
Tian
X.-G.
, “
A high order theory for functionally graded piezoelectric shells
,”
Int. J. of Solids and Structures
,
39
, pp.
5325
5344
,
2002
.
30.
IEEE Standard on Piezoelectricity, IEEE Std. 176–1987, IEEE, 1988.
31.
Chen
Y. H.
,
Ma
J.
, and
Li
T.
, “
A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition
,”
Ceramics Intl.
,
30
, pp.
683
687
,
2004
.
32.
Uchino, K., “Reliability of ceramic actuators,” IEEE International Symposium on Applications of Ferroelectrics, 2, pp. 736–766, 1996.
33.
Uchino, K., “Recent topics in ceramic actuators - to improve reliability and durability,” IEEE 7th International Symposium on Applications of Ferroelectrics, pp. 153–158, 1990.
This content is only available via PDF.
You do not currently have access to this content.